Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Bioessays ; 44(8): e2200046, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35719031

RESUMO

Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.


Assuntos
Antibacterianos , Proteínas de Ligação a RNA , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo
2.
Proteomics ; 23(18): e2200474, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37496314

RESUMO

trans-Translation is the most effective ribosome rescue system known in bacteria. While it is essential in some bacteria, Bacillus subtilis possesses two additional alternative ribosome rescue mechanisms that require the proteins BrfA or RqcH. To investigate the physiology of trans-translation deficiency in the model organism B. subtilis, we compared the proteomes of B. subtilis 168 and a ΔssrA mutant in the mid-log phase using gel-free label-free quantitative proteomics. In chemically defined medium, the growth rate of the ssrA deletion mutant was 20% lower than that of B. subtilis 168. An 35 S-methionine incorporation assay demonstrated that protein synthesis rates were also lower in the ΔssrA strain. Alternative rescue factors were not detected. Among the 34 proteins overrepresented in the mutant strain were eight chemotaxis proteins. Indeed, both on LB agar and minimal medium the ΔssrA strain showed an altered motility and chemotaxis phenotype. Despite the lower growth rate, in the mutant proteome ribosomal proteins were more abundant while proteins related to amino acid biosynthesis were less abundant than in the parental strain. This overrepresentation of ribosomal proteins coupled with a lower protein synthesis rate and down-regulation of precursor supply reflects the slow ribosome recycling in the trans-translation-deficient mutant.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteômica , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Proteoma/metabolismo
3.
BMC Microbiol ; 21(1): 168, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090324

RESUMO

BACKGROUND: Significant progress has been made in advancing and standardizing tools for human genomic and biomedical research. Yet, the field of next-generation sequencing (NGS) analysis for microorganisms (including multiple pathogens) remains fragmented, lacks accessible and reusable tools, is hindered by local computational resource limitations, and does not offer widely accepted standards. One such "problem areas" is the analysis of Transposon Insertion Sequencing (TIS) data. TIS allows probing of almost the entire genome of a microorganism by introducing random insertions of transposon-derived constructs. The impact of the insertions on the survival and growth under specific conditions provides precise information about genes affecting specific phenotypic characteristics. A wide array of tools has been developed to analyze TIS data. Among the variety of options available, it is often difficult to identify which one can provide a reliable and reproducible analysis. RESULTS: Here we sought to understand the challenges and propose reliable practices for the analysis of TIS experiments. Using data from two recent TIS studies, we have developed a series of workflows that include multiple tools for data de-multiplexing, promoter sequence identification, transposon flank alignment, and read count repartition across the genome. Particular attention was paid to quality control procedures, such as determining the optimal tool parameters for the analysis and removal of contamination. CONCLUSIONS: Our work provides an assessment of the currently available tools for TIS data analysis. It offers ready to use workflows that can be invoked by anyone in the world using our public Galaxy platform ( https://usegalaxy.org ). To lower the entry barriers, we have also developed interactive tutorials explaining details of TIS data analysis procedures at https://bit.ly/gxy-tis .


Assuntos
Elementos de DNA Transponíveis , Escherichia coli/genética , Genômica/métodos , Staphylococcus aureus/genética , Sequência de Bases , Biblioteca Gênica , Genoma Bacteriano , Genômica/instrumentação , Genômica/normas , Mutagênese Insercional , Regiões Promotoras Genéticas , Software
4.
Artigo em Inglês | MEDLINE | ID: mdl-33046497

RESUMO

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Assuntos
Antibacterianos , Proteômica , Antibacterianos/farmacologia , Bacillus subtilis , Proteínas de Bactérias/genética , Tetraciclinas
5.
PLoS Biol ; 15(3): e2001318, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323818

RESUMO

Science plays an important role in most aspects of society, and scientists face ethical decisions as a routine part of their work, but science education frequently omits or segregates content related to ethics and broader impacts of science. Undergraduate research experiences have the potential to bridge traditional divides in education and provide a holistic view of science. In practice, these experiences can be inconsistent and may not provide the optimal learning environment. We developed a course that combines seminar and independent research elements to support student learning during undergraduate research, makes ethical and societal impacts of science clear by relating them to the students' own research projects, and develops students' ethical decision-making skills. Here, we describe the course and provide resources for developing a similar course.


Assuntos
Currículo , Ética em Pesquisa/educação , Universidades
6.
Artigo em Inglês | MEDLINE | ID: mdl-30917982

RESUMO

Staphylococcus aureus is a leading cause of infection in the United States, and due to the rapid development of resistance, new antibiotics are constantly needed. trans-Translation is a particularly promising antibiotic target because it is conserved in many bacterial species, is critical for bacterial survival, and is unique among prokaryotes. We have investigated the potential of KKL-40, a small-molecule inhibitor of trans-translation, and find that it inhibits both methicillin-susceptible and methicillin-resistant strains of S. aureus KKL-40 is also effective against Gram-positive pathogens, including a vancomycin-resistant strain of Enterococcus faecalis, Bacillus subtilis, and Streptococcus pyogenes, although its performance with Gram-negative pathogens is mixed. KKL-40 synergistically interacts with the human antimicrobial peptide LL-37, a member of the cathelicidin family, to inhibit S. aureus but not other antibiotics tested, including daptomycin, kanamycin, or erythromycin. KKL-40 is not cytotoxic to HeLa cells at concentrations that are 100-fold higher than the effective MIC. We also find that S. aureus develops minimal resistance to KKL-40 even after multiday passage at sublethal concentrations. Therefore, trans-translation inhibitors could be a particularly promising drug target against S. aureus, not only because of their ability to inhibit bacterial growth but also because of their potential to simultaneously render S. aureus more susceptible to host antimicrobial peptides.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HeLa , Humanos , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Catelicidinas
7.
Nanomedicine ; 17: 391-400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30399437

RESUMO

We report the design, synthesis and efficacy of a new class of gel-like nano-carrier, or 'nanogel', prepared via templated electrostatic assembly of anionic hyaluronic acid (HA) polysaccharides with the cationic peptide amphiphile poly-L-lysine (PLL). Small molecules and proteins present during nanogel assembly become directly encapsulated within the carrier and are precisely released by tuning the nanogel HA:PLL ratio to control particle swelling. Remarkably, nanogels exhibit versatile and complimentary mechanisms of cargo delivery depending on the biologic context. For example, in mammalian cells, nanogels are rapidly internalized and escape the endosome to both deliver membrane-impermeable protein cargo into the cytoplasm and improve chemotherapeutic potency in drug resistant cancer cells. In bacteria, nanogels permeabilize microbial membranes to sensitize bacterial pathogens to the action of a loaded antibiotic. Thus, peptide nanogels represent a versatile, readily scalable and bio-responsive carrier capable of augmenting and enhancing the utility of a broad range of biomolecular cargoes.


Assuntos
Portadores de Fármacos/química , Géis/química , Ácido Hialurônico/química , Polilisina/química , Células A549 , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Géis/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/metabolismo , Nanoestruturas/química , Nanotecnologia , Polilisina/metabolismo
8.
PLoS Genet ; 12(3): e1005964, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27029019

RESUMO

Bacteria use trans-translation and the alternative rescue factors ArfA (P36675) and ArfB (Q9A8Y3) to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197) is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and substrate specificity. Both ArfB and ICT1 hydrolyze peptidyl-tRNA on nonstop ribosomes or ribosomes stalled with ≤6 nucleotides extending past the A site, but are unable to hydrolyze peptidyl-tRNA when the mRNA extends ≥14 nucleotides past the A site. ICT1 provided sufficient ribosome rescue activity to support viability in C. crescentus cells that lacked both trans-translation and ArfB. Likewise, expression of ArfB protected human cells from death when ICT1 was silenced with siRNA. These data indicate that ArfB and ICT1 are functionally interchangeable, and demonstrate that ICT1 is a ribosome rescue factor. Because ICT1 is essential in human cells, these results suggest that ribosome rescue activity in mitochondria is required in humans.


Assuntos
Mitocôndrias/genética , Biossíntese de Proteínas/genética , Proteínas/genética , Ribossomos/genética , Caulobacter crescentus/genética , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas , Ribossomos/metabolismo , Xilose/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-28760903

RESUMO

Bacillus anthracis, the causative agent of anthrax, remains a significant threat to humans, including potential use in bioterrorism and biowarfare. The capacity to engineer strains with increased pathogenicity coupled with the ease of disseminating lethal doses of B. anthracis spores makes it necessary to identify chemical agents that target and kill spores. Here, we demonstrate that a tetrazole-based trans-translation inhibitor, KKL-55, is bactericidal against vegetative cells of B. anthracis in culture. Using a fluorescent analog, we show that this class of compounds colocalizes with developing endospores and bind purified spores in vitro KKL-55 was effective against spores at concentrations close to its MIC for vegetative cells. Spore germination was inhibited at 1.2× MIC, and spores were killed at 2× MIC. In contrast, ciprofloxacin killed germinants at concentrations close to its MIC but did not prevent germination even at 32× MIC. Because toxins are released by germinants, macrophages infected by B. anthracis spores are killed early in the germination process. At ≥2× MIC, KKL-55 protected macrophages from death after infection with B. anthracis spores. Ciprofloxacin required concentrations of ≥8× MIC to exhibit a similar effect. Taken together, these data indicate that KKL-55 and related tetrazoles are good lead candidates for therapeutics targeting B. anthracis spores and suggest that there is an early requirement for trans-translation in germinating spores.


Assuntos
Antraz/prevenção & controle , Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Benzamidas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Tetrazóis/farmacologia , Animais , Linhagem Celular , Ciprofloxacina/farmacologia , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7
10.
Antimicrob Agents Chemother ; 60(6): 3276-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953190

RESUMO

Bacteria require at least one pathway to rescue ribosomes stalled at the ends of mRNAs. The primary pathway for ribosome rescue is trans-translation, which is conserved in >99% of sequenced bacterial genomes. Some species also have backup systems, such as ArfA or ArfB, which can rescue ribosomes in the absence of sufficient trans-translation activity. Small-molecule inhibitors of ribosome rescue have broad-spectrum antimicrobial activity against bacteria grown in liquid culture. These compounds were tested against the tier 1 select agent Francisella tularensis to determine if they can limit bacterial proliferation during infection of eukaryotic cells. The inhibitors KKL-10 and KKL-40 exhibited exceptional antimicrobial activity against both attenuated and fully virulent strains of F. tularensis in vitro and during ex vivo infection. Addition of KKL-10 or KKL-40 to macrophages or liver cells at any time after infection by F. tularensis prevented further bacterial proliferation. When macrophages were stimulated with the proinflammatory cytokine gamma interferon before being infected by F. tularensis, addition of KKL-10 or KKL-40 reduced intracellular bacteria by >99%, indicating that the combination of cytokine-induced stress and a nonfunctional ribosome rescue pathway is fatal to F. tularensis Neither KKL-10 nor KKL-40 was cytotoxic to eukaryotic cells in culture. These results demonstrate that ribosome rescue is required for F. tularensis growth at all stages of its infection cycle and suggest that KKL-10 and KKL-40 are good lead compounds for antibiotic development.


Assuntos
Antibacterianos/farmacologia , Francisella tularensis/efeitos dos fármacos , Oxidiazóis/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Interferon gama/farmacologia , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Virulência/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 110(25): 10282-7, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733947

RESUMO

The trans-translation pathway for protein tagging and ribosome release plays a critical role for viability and virulence in a wide range of pathogens but is not found in animals. To explore the use of trans-translation as a target for antibiotic development, a high-throughput screen and secondary screening assays were used to identify small molecule inhibitors of the pathway. Compounds that inhibited protein tagging and proteolysis of tagged proteins were recovered from the screen. One of the most active compounds, KKL-35, inhibited the trans-translation tagging reaction with an IC50 = 0.9 µM. KKL-35 and other compounds identified in the screen exhibited broad-spectrum antibiotic activity, validating trans-translation as a target for drug development. This unique target could play a key role in combating strains of pathogenic bacteria that are resistant to existing antibiotics.


Assuntos
Antibacterianos/biossíntese , Escherichia coli/genética , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , Bibliotecas de Moléculas Pequenas , Antibacterianos/farmacologia , Bioensaio , Códon de Terminação/genética , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Biblioteca Gênica , Humanos , Luciferases/genética , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribossomos/genética
12.
J Bacteriol ; 196(12): 2123-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706739

RESUMO

Problems during gene expression can result in a ribosome that has translated to the 3' end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Terminação Traducional da Cadeia Peptídica/fisiologia , Proteínas de Bactérias/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro
13.
Antimicrob Agents Chemother ; 58(9): 5500-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001303

RESUMO

Noncoding small RNAs (sRNAs) act in conjunction with the RNA chaperone Hfq to regulate gene expression in bacteria. Because Hfq is required for virulence in several bacterial pathogens, the Hfq-sRNA system is an attractive target for antibiotic development. A reporter strain in which the expression of yellow fluorescent protein (YFP) is controlled by Hfq-sRNA was engineered to identify inhibitors of this system. A reporter that is targeted by Hfq in conjunction with the RybB sRNA was used in a genetic screen to identify inhibitors from a library of cyclic peptides produced in Escherichia coli using split-intein circular ligation of peptides and proteins (SICLOPPS), an intein-based technology. One cyclic peptide identified in this screen, RI20, inhibited Hfq-mediated repression of gene expression in conjunction with both RybB and an unrelated sRNA, MicF. Gel mobility shift assays showed that RI20 inhibited binding of Hfq to RybB and MicF with similar Ki values. These data suggest that RI20 inhibits Hfq activity by blocking interactions with sRNAs and provide a paradigm for inhibiting virulence genes in Gram-negative pathogens.


Assuntos
Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Pequeno RNA não Traduzido/genética , Bioensaio/métodos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligação Proteica/genética , RNA Bacteriano/genética , Transdução de Sinais/genética , Virulência/genética
14.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-39296885

RESUMO

Trans -translation is a target for the development of new antibiotics. The potential antibiotic lead compound KKL-55 binds to EF-Tu and inhibits trans -translation. Previous structural and biochemical studies showed that glutamate 378 in EF-Tu directly contacts bound KKL-55, but mutation of residue 378 to alanine had no effect on the equilibrium dissociation constant for binding of EF-Tu and KKL-55. Here, we found that a variant of EF-Tu with tryptophan at position 378 increases the K d for binding of EF-Tu and KKL-55 by >6-fold, indicating that a larger side chain at this position is disruptive. The E378W variant decreased the amount of translation in vitro and no trans -translation could be detected with this variant. These data provide further evidence that residue 378 of EF-Tu forms part of the KKL-55 binding pocket and are consistent with a lack of spontaneous mutants resistant to KKL-55.

15.
Proc Natl Acad Sci U S A ; 107(12): 5599-604, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20212131

RESUMO

Protein localization mechanisms dictate the functional and structural specialization of cells. Of the four polar surface organelles featured by the dimorphic bacterium Caulobacter crescentus, the stalk, a cylindrical extension of all cell envelope layers, is the least well characterized at the molecular level. Here we apply a powerful experimental scheme that integrates genetics with high-throughput localization to discover StpX, an uncharacterized bitopic membrane protein that modulates stalk elongation and is sequestered to the stalk. In stalkless mutants StpX is dispersed. Two populations of StpX were discernible within the stalk with different mobilities: an immobile one near the stalk base and a mobile one near the stalk tip. Molecular anatomy provides evidence that (i) the StpX transmembrane domain enables access to the stalk organelle, (ii) the N-terminal periplasmic domain mediates retention in the stalk, and (iii) the C-terminal cytoplasmic domain enhances diffusion within the stalk. Moreover, the accumulation of StpX and an N-terminally truncated isoform is differentially coordinated with the cell cycle. Thus, at the submicron scale the localization and the mobility of a protein are precisely regulated in space and time and are important for the correct organization of a subcellular compartment or organelle such as the stalk.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Extensões da Superfície Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Caulobacter crescentus/ultraestrutura , Ciclo Celular , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/ultraestrutura , Genes Bacterianos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
mBio ; 14(5): e0146123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681945

RESUMO

IMPORTANCE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.


Assuntos
Fator Tu de Elongação de Peptídeos , Fatores de Alongamento de Peptídeos , Fator Tu de Elongação de Peptídeos/genética , Fatores de Alongamento de Peptídeos/genética , Antibacterianos/farmacologia , Proteínas de Ligação a RNA/genética , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA de Transferência/metabolismo
17.
Antimicrob Agents Chemother ; 56(4): 1854-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252821

RESUMO

The ClpXP protease is a critical bacterial intracellular protease that regulates protein turnover in many bacterial species. Here we identified a pharmacological inhibitor of the ClpXP protease, F2, and evaluated its action in Bacillus anthracis and Staphylococcus aureus. We found that F2 exhibited synergistic antimicrobial activity with cathelicidin antimicrobial peptides and antibiotics that target the cell well and/or cell membrane, such as penicillin and daptomycin, in B. anthracis and drug-resistant strains of S. aureus. ClpXP inhibition represents a novel therapeutic strategy to simultaneously sensitize pathogenic bacteria to host defenses and pharmaceutical antibiotics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Endopeptidase Clp/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Membrana Celular/metabolismo , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Dados de Sequência Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tetrazóis/farmacologia , Catelicidinas
18.
Proc Natl Acad Sci U S A ; 106(38): 16405-9, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805312

RESUMO

Eukaryotes and bacteria regulate the activity of some proteins by localizing them to discrete subcellular structures, and eukaryotes localize some RNAs for the same purpose. To explore whether bacteria also spatially regulate RNAs, the localization of tmRNA was determined using fluorescence in situ hybridization. tmRNA is a small regulatory RNA that is ubiquitous in bacteria and that interacts with translating ribosomes in a reaction known as trans-translation. In Caulobacter crescentus, tmRNA was localized in a cell-cycle-dependent manner. In G(1)-phase cells, tmRNA was found in regularly spaced foci indicative of a helix-like structure. After initiation of DNA replication, most of the tmRNA was degraded, and the remaining molecules were spread throughout the cytoplasm. Immunofluorescence assays showed that SmpB, a protein that binds tightly to tmRNA, was colocalized with tmRNA in the helix-like pattern. RNase R, the nuclease that degrades tmRNA, was localized in a helix-like pattern that was separate from the SmpB-tmRNA complex. These results suggest a model in which tmRNA-SmpB is localized to sequester tmRNA from RNase R, and localization might also regulate tmRNA-SmpB interactions with ribosomes.


Assuntos
Proteínas de Bactérias/genética , Caulobacter crescentus/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Divisão Celular/genética , Eletroporação/métodos , Exorribonucleases/genética , Exorribonucleases/metabolismo , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Plasmídeos/genética , Ligação Proteica , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Succinimidas
19.
Curr Biol ; 32(10): R469-R472, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35609545

RESUMO

When ribosomes collide while translating the same mRNA, a MutS-like protein can pry apart the leading ribosome and a nuclease can cut the mRNA between the collided ribosomes to initiate ribosome rescue and recycling.


Assuntos
Biossíntese de Proteínas , Ribossomos , Humanos , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
20.
Adv Exp Med Biol ; 722: 231-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915793

RESUMO

The bacterial RNA network includes most of the same components found in eukaryotes, and many of the interactions that under lie transcription, RNA processing and stability, translation, and protein secretion are conserved. The major difference is that all of these functions take place in a single cellular compartment. In spite of the absence of membrane-bound organelles, or in some cases because of it, key components of the RNA network are localized to specific subcellular spaces or structures to ensure proper processing and regulation. This chapter focuses on what is known about subcellular localization of the bacterial RNA network and what insights localization provides to regulation of the RNA infrastructure of the cell.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Biológicos , Fator Tu de Elongação de Peptídeos/metabolismo , Ligação Proteica , RNA Bacteriano/classificação , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA