Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(8): e2250359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36933268

RESUMO

Mast cells (MCs) are immune cells residing in tissues and playing indispensable roles in maintaining homeostasis and inflammatory states. Skin lesions associated with atopic dermatitis (AD) and type 2 skin inflammation display an increment in MCs, which have both pro- and anti-inflammatory effects. The direct and indirect activations of skin MCs by environmental factors such as Staphylococcus aureus can instigate type 2 skin inflammation in AD with poorly understood mechanisms. Furthermore, both IgE-dependent and -independent degranulation of MCs contribute to pruritus in AD. Conversely, MCs suppress type 2 skin inflammation by promoting Treg expansion through IL-2 secretion in the spleen. Moreover, skin MCs can upregulate gene expression involved in skin barrier function, thus mitigating AD-like inflammation. These functional variances of MCs in AD could stem from differences in experimental systems, their localization, and origins. In this review, we will focus on how MCs are maintained in the skin under homeostatic and inflammatory conditions, and how they are involved in the pathogenesis of type 2 skin inflammation.


Assuntos
Dermatite Atópica , Mastócitos , Humanos , Imunoglobulina E , Pele/patologia , Inflamação
2.
J Allergy Clin Immunol ; 151(1): 159-171.e8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122789

RESUMO

BACKGROUND: Mast cells (MCs) are tissue-resident cells with various immunologic functions. MCs are increased in atopic dermatitis (AD) skin and can contribute to the inflammation. Although skin MCs are inducible from bone marrow (BM) cells in vitro, they are maintained locally by self-proliferation in the steady state in vivo. However, how skin MCs are increased in AD skin, including the infiltration of BM-derived MC progenitors (MCps) and their differentiation, remains unclear. OBJECTIVE: We sought to identify and characterize BM-derived MCps in AD skin. METHODS: BM-derived MCps in AD skin were analyzed by flow cytometry using BM-chimeric mice and parabiosis in an MC903-induced AD model. BM-derived MCps in AD-like skin were compared with resident MCs for gene expression by RNA- sequencing analysis. RESULTS: We observed local proliferation of resident MCs and an increase in BM-derived MCs in AD-like skin. BM-derived MCs in the skin were derived from circulating MCps and were distinguishable from resident MCs by integrinß7. RNA- sequence analysis showed that integrinß7+ MCs (BM-derived MCps) in the skin shared the characteristics of both mucosal-type MCs and connective tissue-type MCs, and increased the expression of genes related to MCp migration. BM-derived MCps proliferated in situ, gradually lost the integrinß7 expression, and acquired connective tissue-type MC phenotypes during the remission phase of inflammation. CONCLUSIONS: BM-derived integrinß7+ MCps migrate to AD-like skin and contribute to the maintenance of skin MCs.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/metabolismo , Mastócitos , Medula Óssea/metabolismo , Diferenciação Celular , Inflamação/metabolismo , RNA/metabolismo
3.
Front Immunol ; 13: 898419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634300

RESUMO

Skin is a frontline organ that is continuously exposed to external stimuli, including pathogens. Various immune cells reside in the skin under physiological conditions and protect the body from the entry of pathogens/antigens by interacting with each other and orchestrating diverse cutaneous immune responses. To avoid unnecessary inflammation and tissue damage during the elimination of external pathogens and antigens, skin possesses regulatory systems that fine-tune these immune reactions. Mast cells (MCs) are one of the skin-resident immune cell populations that play both effector and regulatory functions in the cutaneous immune response. So far, the interleukin-10-mediated mechanisms have mostly been investigated as the regulatory mechanisms of MCs. Recent studies have elucidated other regulatory mechanisms of MCs, such as the maintenance of regulatory T/B cells and the programmed cell death protein-1/programmed cell death-ligand 1-mediated inhibitory pathway. These regulatory pathways of MCs have been suggested to play important roles in limiting the excessive inflammation in inflammatory skin diseases, such as contact and atopic dermatitis. The regulatory functions of MCs may also be involved in the escape mechanisms of antitumor responses in skin cancers, such as melanoma. Understanding and controlling the regulatory functions of skin MCs may lead to novel therapeutic strategies for inflammatory skin diseases and skin cancers.


Assuntos
Dermatite Atópica , Neoplasias Cutâneas , Humanos , Imunidade , Inflamação , Mastócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA