Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 664: 115033, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584741

RESUMO

Degree of labeling and label efficiency are key factors for optimal characterization of critical reagents that are used in ligand binding assays. Here, three case studies are shown demonstrating how liquid chromatography-mass spectrometry (LC-MS) was utilized to characterize critical reagents using three unique methodologies. Critical reagent batches were prepared for LC-MS analysis by use of: 20 mM dithiothreitol (DTT) (Case 1), rapid PNGaseF (Case 2), and a mobile phase diluent (Case 3). LC-MS was run at three different MS method conditions in each troubleshooting case specific for reduced IgG, intact IgG, and native LC-MS, respectively. Specified LC-MS methods based on sample type and configuration elucidated clear MS profiles, allowing for degree of labeling and label efficiencies to be calculated. Ultimately the LC-MS analyses were fine-tuned for critical reagent characterization, and practices for analyzing similar reagents in the future can be established.


Assuntos
Imunoglobulina G , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Indicadores e Reagentes , Espectrometria de Massas em Tandem/métodos
2.
Anal Chem ; 92(12): 8268-8277, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32392410

RESUMO

Complex biotherapeutics present challenges from drug discovery, screening, and development perspectives. While monoclonal antibody drugs are not monitored for metabolites in the same manner as small molecules, biotherapeutics such as fusion proteins, antibody-drug conjugates, or bispecific antibodies may undergo biotransformation (such as clipping, deamidation, or oxidation) in vivo, resulting in catabolites that can have a direct impact on drug safety or efficacy. Here antibody subunit LC-MS is utilized for evaluation of two classes of complex biotherapeutics: an antibody-drug conjugate and a mAb-fusion biotherapeutic. Pharmacokinetic concentration, biotransformation, and DAR data are collectively presented using the subunit LC-MS approach for the two molecules, and the methods shared in detail can be applied to any humanized IgG1 mAb biotherapeutic for preclinical study support. Overall, the data generated from antibody LC-MS analyses can provide key information in early phase development and deliver multiple study end points with a single data set.


Assuntos
Anticorpos Monoclonais/análise , Imunoconjugados/análise , Animais , Anticorpos Monoclonais/farmacocinética , Biotransformação , Cromatografia Líquida , Imunoconjugados/farmacocinética , Macaca mulatta , Espectrometria de Massas , Ratos
3.
Nature ; 480(7376): 254-8, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037311

RESUMO

A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This 'bottom-up' process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous characterization of alternative splice forms, diverse modifications (for example, acetylation and methylation) and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species. 'Top-down' interrogation of whole proteins can overcome these problems for individual proteins, but has not been achieved on a proteome scale owing to the lack of intact protein fractionation methods that are well integrated with tandem mass spectrometry. Here we show, using a new four-dimensional separation system, identification of 1,043 gene products from human cells that are dispersed into more than 3,000 protein species created by post-translational modification (PTM), RNA splicing and proteolysis. The overall system produced greater than 20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kDa and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply modified species in response to accelerated cellular ageing (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database, the data provide precise correlations to individual genes and proof-of-concept for large-scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research.


Assuntos
Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Proteoma/análise , Proteoma/química , Proteômica/métodos , Processamento Alternativo , Linhagem Celular , Senescência Celular/genética , Dano ao DNA , Bases de Dados de Proteínas , Proteína HMGA1a/análise , Proteína HMGA1b/análise , Células HeLa , Humanos , Fenótipo , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica/instrumentação
4.
J Am Soc Mass Spectrom ; 34(9): 1837-1846, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37478497

RESUMO

LC-MS analysis of therapeutic antibodies and other biotherapeutics from in-life studies (e.g., serum/plasma) has evolved from simple peptide digestion to peptide mapping and intact mass monitoring. From more advanced analytical approaches, a deeper understanding as to the fate of the biotherapeutic in vivo is gained. Here, we examine the next generation of approaches to facilitate the most comprehensive understanding of large molecule drug fate in circulation. Three case studies are presented: (1) use of relative and absolute calibration curves for biotherapeutic quantitation from the same sample set; (2) top-down mass spectrometry applied to bioanalytical assays; (3) biotherapeutic protein complexes from serum analyzed by native protein MS. We anticipate that these approaches will be further adapted and applied by other research groups.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas/análise , Peptídeos , Mapeamento de Peptídeos/métodos
5.
J Am Soc Mass Spectrom ; 34(1): 17-26, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459688

RESUMO

Time-of-flight MS systems for biopharmaceutical and protein characterization applications may play an even more pivotal role in the future as biotherapeutics increase in drug pipelines and as top-down MS approaches increase in use. Here, a recently developed TOF MS system is examined for monoclonal antibody (mAb) characterization from serum samples. After immunocapture, purified drug material spiked into monkey serum or dosed for an in-life study is analyzed by top-down MS. While characterization aspects are a distinct advantage of the MS platform, MS system and software capabilities are also shown regarding intact protein quantitation. Such applications are demonstrated to help enable comprehensive protein molecule quantitation and characterization by use of TOF MS instrumentation.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Elétrons , Software
6.
Anal Chem ; 84(5): 2111-7, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22356091

RESUMO

Current high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis. Further, a goal of high-throughput top-down proteomics is to extend the mass range for routine nLC MS analysis up to 80 kDa because gene sequence analysis predicts that ~70% of the human proteome is transcribed to be less than 80 kDa. Normally, large proteins greater than 50 kDa are identified and characterized by top-down proteomics through fraction collection and direct infusion at relatively low throughput. Further, other MS-based techniques provide top-down protein characterization, however at low resolution for intact mass measurement. Here, we present analysis of standard (up to 78 kDa) and whole cell lysate proteins by Fourier transform ion cyclotron resonance mass spectrometry (nLC electrospray ionization (ESI) FTICR MS). The separation platform reduced the complexity of the protein matrix so that, at 14.5 T, proteins from whole cell lysate up to 72 kDa are baseline mass resolved on a nano-LC chromatographic time scale. Further, the results document routine identification of proteins at improved throughput based on accurate mass measurement (less than 10 ppm mass error) of precursor and fragment ions for proteins up to 50 kDa.


Assuntos
Cromatografia Líquida de Alta Pressão , Nanotecnologia , Proteínas/química , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Análise de Fourier , Células HeLa , Humanos , Focalização Isoelétrica , Peso Molecular
7.
Anal Chem ; 84(1): 209-15, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22103811

RESUMO

As the process of top-down mass spectrometry continues to mature, we benchmark the next installment of an improving methodology that incorporates a tube-gel electrophoresis (TGE) device to separate intact proteins by molecular mass. Top-down proteomics is accomplished in a robust fashion to yield the identification of hundreds of unique proteins, many of which correspond to multiple protein forms. The TGE platform separates 0-50 kDa proteins extracted from the yeast proteome into 12 fractions prior to automated nanocapillary LC-MS/MS in technical triplicate. The process may be completed in less than 72 h. From this study, 530 unique proteins and 1103 distinct protein species were identified and characterized, thus representing the highest coverage to date of the Saccharomyces cerevisiae proteome using top-down proteomics. The work signifies a significant step in the maturation of proteomics based on direct measurement and fragmentation of intact proteins.


Assuntos
Espectrometria de Massas/métodos , Proteoma , Proteínas de Saccharomyces cerevisiae/análise , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Espectrometria de Massas em Tandem
8.
J Chromatogr A ; 1676: 463261, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35752151

RESUMO

Sensitive, multiplexed protein quantification remains challenging despite recent advancements in LC-MS assays for targeted protein biomarker quantification. High-sensitivity protein biomarker measurements usually require immuno-affinity enrichment of target protein; a process which is highly dependent on capture reagent and limited in capability to measure multiple analytes. Herein, we report a novel antibody-free platform, which measures multiple biomarkers from complex matrices employing a strategically optimized solid-phase extraction cleanup and orthogonal multidimensional LC-MS. Eight human protein biomarkers with different specifications were spiked into canine plasma as a model investigation system. The developed strategy achieved the desired sensitivity, robustness, and throughput via the following steps: (1) post digestion mixed-mode cation exchange-reverse phase SPE enrichment cleaned up the sample initially; (2) rapid, high-pH peptide fractionation further eliminated background components efficiently while selectively enriched signature peptides (SP) to provide sufficient sensitivity for multiple targets; and (3) trapping-micro-LC-MS analysis delivered high sensitivity comparable to a nano-LC-MS method but with much better robustness and throughput for the final analysis. Compared with a conventional LC-MS assay with direct protein digestion and limited clean-up, analysis with this antibody-free platform improved the LLOQ by 1-2 orders of magnitude for the eight protein biomarkers, reaching as low as 5 ng/mL in plasma, with feasible robustness and throughput. This platform was applied for the quantification of biomarkers of respiratory conditions in patients with various lung diseases, demonstrating real-world applicability.


Assuntos
Proteínas , Extração em Fase Sólida , Animais , Anticorpos , Biomarcadores/análise , Cromatografia Líquida/métodos , Cães , Humanos , Espectrometria de Massas/métodos , Peptídeos , Extração em Fase Sólida/métodos
9.
Bioanalysis ; 14(9): 505-580, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35578993

RESUMO

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.


Assuntos
Vesículas Extracelulares , Vacinas , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/química , Humanos , Espectrometria de Massas/métodos , Nanomedicina
10.
J Am Soc Mass Spectrom ; 32(8): 1886-1900, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32869982

RESUMO

Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteínas/farmacocinética , Animais , Biotransformação , Cromatografia de Afinidade/métodos , Cromatografia Líquida , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoconjugados/análise , Espectrometria de Massas/economia , Espectrometria de Massas/instrumentação , Proteínas/isolamento & purificação , Manejo de Espécimes
11.
Proteomics ; 10(20): 3589-97, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20848673

RESUMO

Applying high-throughput Top-Down MS to an entire proteome requires a yet-to-be-established model for data processing. Since Top-Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge-state resolved (ion trap) LC-MS data, which are then linked to their fragment ions for database searching using ProSight. Automated determination of human keratin and tubulin isoforms is one result. Optimized for the intricacies of whole proteins, new software modules visualize proteome-scale data based on the LC retention time and intensity of intact masses and enable selective detection of PTMs to automatically screen for acetylation, phosphorylation, and methylation. Software functionality was demonstrated using comparative LC-MS data from yeast strains in addition to human cells undergoing chemical stress. We further these advances as a key aspect of realizing Top-Down MS on a proteomic scale.


Assuntos
Espectrometria de Massas , Proteômica , Algoritmos , Sequência de Aminoácidos , Proteínas Fúngicas/análise , Células HeLa , Histonas/análise , Histonas/genética , Humanos , Queratinas/análise , Queratinas/genética , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Proteômica/instrumentação , Proteômica/métodos , Software , Estatmina/análise , Estatmina/genética , Tubulina (Proteína)/análise , Tubulina (Proteína)/genética
12.
Anal Chem ; 82(4): 1234-44, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20073486

RESUMO

Despite the availability of ultra-high-resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for online LC-MS to drive high-throughput top-down proteomics in a fashion similar to that of bottom-up proteomics. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation and detection of fragment ions with <10 ppm mass accuracy for highly specific database searching using tailored software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines prefractionated by their molecular mass using a gel-based sieving system.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/análise , Proteínas/química , Sequência de Aminoácidos , Animais , Bovinos , Células HeLa , Humanos , Dados de Sequência Molecular , Peso Molecular , Polímeros/química , Porosidade , Proteoma/análise , Proteoma/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Fatores de Tempo
13.
Bioanalysis ; 12(19): 1389-1403, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32975433

RESUMO

Background: Antibody biotherapeutic measurement from pharmacokinetic studies has not been traditionally based on intact molecular mass as is the case for small molecules. However, recent advancements in protein capture and mass spectrometer technology have enabled intact mass detection and quantitation for dosed biotherapeutics. A bioanalytical method validation is part of the regulatory requirement for sample analysis to determine drug concentration from in-life study samples. Results/methodology: Here, an intact protein LC-MS assay is subjected to mock bioanalytical method validation, and unknown samples are compared between intact protein LC-MS and established bioanalytical assay formats: Ligand-binding assay and peptide LC-MS/MS. Discussion/conclusion: Results are presented from the intact and traditional bioanalytical method evaluations, where the in-life sample concentrations were comparable across method types with associated data analyses presented. Furthermore, for intact protein LC-MS, modification monitoring and evaluation of data processing parameters is demonstrated.


Assuntos
Anticorpos Monoclonais/farmacocinética , Terapia Biológica/métodos , Cromatografia Líquida/métodos , Preparações Farmacêuticas/análise , Espectrometria de Massas em Tandem/métodos , Humanos
14.
J Pharm Sci ; 108(4): 1415-1422, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30465782

RESUMO

Biotransformation monitoring involves tracking drug modification occurring during in-life studies. Critical Quality Attribute monitoring from forced degraded drug material or in-life sample sets can provide an in-depth assessment of product quality for support in early- or late-stage drug development. For Critical Quality Attribute analysis, biotherapeutic monoclonal antibody (mAb) subunit analysis and peptide mapping liquid chromatography-mass spectrometry (LC-MS) approaches are used, although typically from an in vitro setting (e.g., formulation buffer) not involving biological samples or material. Here, samples from a high-dose rat study (in vivo) are subjected to analysis by ligand binding assay, mAb subunit LC-MS, and peptide mapping by LC-MS. Taken together, data from the 3 analytical approaches provide information regarding drug concentration in circulation, biotransformation, and biotherapeutic drug product quality. The concept of a multitier workflow for preclinical or clinical sample sets can be applied to other biotherapeutic mAb products such as bispecific mAbs, fusions proteins, or antibody-drug conjugates.


Assuntos
Anticorpos Monoclonais/farmacocinética , Mapeamento de Peptídeos/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/química , Biotransformação , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Controle de Qualidade , Ratos
15.
Bioanalysis ; 10(22): 1877-1890, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325207

RESUMO

Biotherapeutic drugs have emerged in quantity in pharmaceutical pipelines, and increasingly diverse biomolecules are progressed through preclinical and clinical development. As purification, separation, mass spectrometer detection and data processing capabilities improve, there is opportunity to monitor drug concentration by traditional ligand-binding assay or MS measurement and to monitor metabolism, catabolism or other biomolecular mass variants present in circulation. This review highlights approaches and examples of monitoring biotransformation of biotherapeutics by MS as these techniques are poised to add value to drug development in years to come. The increased use of such approaches, and the successful quantitation of biotherapeutic structural modifications, will provide insightful data for the benefit of both researchers and patients.

16.
Bioanalysis ; 10(4): 241-255, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29333871

RESUMO

AIM: GSKA is a compound that was in development in clinical trials. A bioanalysis method to quantify GSKA using volumetric absorptive microsampling (VAMS) was developed and hematocrit (HCT) related assay bias was investigated. METHODOLOGY: After accurate sampling of 10 µl blood, VAMS tips were air dried approximately 18 h and desorbed by an aqueous solution containing internal standard. The recovered blood underwent liquid-liquid extraction in ethyl acetate to minimize matrix suppression. Assay accuracy, precision, linearity, carryover, selectivity, recovery, matrix effects, HCT effects and long-term quality control stability were evaluated. CONCLUSION: HCT-related assay bias was minimized in 30-60% blood HCT range, and all validation parameters met acceptance criteria. The method is suitable for quantitative analysis of GSKA in human blood.


Assuntos
Monitoramento de Medicamentos/métodos , Hematócrito/métodos , Preparações Farmacêuticas/sangue , Calibragem , Cromatografia Líquida , Humanos , Padrões de Referência , Espectrometria de Massas em Tandem
17.
Bioanalysis ; 9(23): 1883-1893, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29171758

RESUMO

AIM: Typically, quantitation of biotherapeutics from biological matrices by LC-MS is based on a surrogate peptide approach to determine molecule concentration. Recent efforts have focused on quantitation of the intact protein molecules or larger mass subunits of monoclonal antibodies. To date, there has been limited guidance for large or intact protein mass quantitation for quantitative bioanalysis. METHODOLOGY: Intact- and subunit-level analyses of biotherapeutics from biological matrices are performed at 12-25 kDa mass range with quantitation data presented. RESULTS: Linearity, bias and other metrics are presented along with recommendations made on the viability of existing quantitation approaches. CONCLUSION: This communication is intended to start a discussion around intact protein data analysis and processing, recognizing that other published contributions will be required.


Assuntos
Anticorpos Monoclonais/análise , Espectrometria de Massas em Tandem , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/metabolismo , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Peptídeos/análise , Ratos
18.
Bioanalysis ; 8(3): 169-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26795399

RESUMO

BACKGROUND: For quantitative bioanalysis utilizing MS, the instrument of choice is typically a triple quadruple mass spectrometer. However, advances in high-resolution MS have allowed sensitivity and dynamic ranges to approach that of triple quadrupole instruments. RESULTS: A matrix-free protein digest, a digested therapeutic protein and the intact peptide therapeutic liraglutide were each analyzed on high-resolution and triple quadrupole mass spectrometers with data compared. Samples from a mouse PK study with liraglutide were analyzed using the two different instruments, and equivalent PK exposure data were demonstrated. CONCLUSION: High-resolution and triple quadrupole mass spectrometers can generate data resulting in identical PK parameters from an in-life sample set, thus giving confidence in either technique in support of biotherapeutic PK exposure studies.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Preparações Farmacêuticas/análise , Animais , Feminino , Limite de Detecção , Masculino , Espectrometria de Massas/instrumentação , Camundongos , Peptídeos/química , Preparações Farmacêuticas/química , Distribuição Tecidual
19.
Bioanalysis ; 8(20): 2103-14, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27611496

RESUMO

AIM: Large-molecule biotherapeutic quantitation in vivo by LC-MS has traditionally relied on enzymatic digestion followed by quantitation of a 'surrogate peptide' to infer whole-molecule concentration. MS methods presented here measure the whole molecule and provide a platform to better understand the various circulating drug forms by allowing for variant quantitation. RESULTS: An immunocapture LC-MS method for quantitation of a biotherapeutic monoclonal antibody from human plasma is presented. Sensitivity, precision and accuracy for each molecular portion are presented along with an example of glycoform variant quantitation. CONCLUSION: The method is presented as a basic platform to be further developed for Good Practice (GxP) applications, critical quality attribute analysis or general understanding of molecular forms present as required for the wide range of drug development processes.


Assuntos
Anticorpos Monoclonais/imunologia , Análise Química do Sangue/métodos , Cromatografia Líquida de Alta Pressão , Peptídeos/sangue , Espectrometria de Massas em Tandem , Anticorpos Monoclonais/sangue , Glicosilação , Humanos , Imunoensaio , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA