Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(6): 1245-1261.e21, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32142654

RESUMO

In response to transcription-blocking DNA damage, cells orchestrate a multi-pronged reaction, involving transcription-coupled DNA repair, degradation of RNA polymerase II (RNAPII), and genome-wide transcription shutdown. Here, we provide insight into how these responses are connected by the finding that ubiquitylation of RNAPII itself, at a single lysine (RPB1 K1268), is the focal point for DNA-damage-response coordination. K1268 ubiquitylation affects DNA repair and signals RNAPII degradation, essential for surviving genotoxic insult. RNAPII degradation results in a shutdown of transcriptional initiation, in the absence of which cells display dramatic transcriptome alterations. Additionally, regulation of RNAPII stability is central to transcription recovery-persistent RNAPII depletion underlies the failure of this process in Cockayne syndrome B cells. These data expose regulation of global RNAPII levels as integral to the cellular DNA-damage response and open the intriguing possibility that RNAPII pool size generally affects cell-specific transcription programs in genome instability disorders and even normal cells.


Assuntos
Dano ao DNA , RNA Polimerase II/metabolismo , Reparo do DNA , Células HEK293 , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ubiquitinação , Raios Ultravioleta
2.
Cell ; 168(5): 843-855.e13, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28215706

RESUMO

The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage.


Assuntos
Processamento Alternativo/efeitos da radiação , DNA Helicases/genética , RNA não Traduzido/genética , Transcrição Gênica , Raios Ultravioleta , Linhagem Celular , Éxons , Humanos , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elongação da Transcrição Genética/efeitos da radiação , Iniciação da Transcrição Genética/efeitos da radiação
3.
Mol Cell ; 82(8): 1573-1588.e10, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35114099

RESUMO

The heat shock (HS) response involves rapid induction of HS genes, whereas transcriptional repression is established more slowly at most other genes. Previous data suggested that such repression results from inhibition of RNA polymerase II (RNAPII) pause release, but here, we show that HS strongly affects other phases of the transcription cycle. Intriguingly, while elongation rates increase upon HS, processivity markedly decreases, so that RNAPII frequently fails to reach the end of genes. Indeed, HS results in widespread premature transcript termination at cryptic, intronic polyadenylation (IPA) sites near gene 5'-ends, likely via inhibition of U1 telescripting. This results in dramatic reconfiguration of the human transcriptome with production of new, previously unannotated, short mRNAs that accumulate in the nucleus. Together, these results shed new light on the basic transcription mechanisms induced by growth at elevated temperature and show that a genome-wide shift toward usage of IPA sites can occur under physiological conditions.


Assuntos
Poliadenilação , Transcriptoma , Resposta ao Choque Térmico/genética , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética
4.
Cell ; 157(5): 1037-49, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24836610

RESUMO

RECQL5 is the sole member of the RECQ family of helicases associated with RNA polymerase II (RNAPII). We now show that RECQL5 is a general elongation factor that is important for preserving genome stability during transcription. Depletion or overexpression of RECQL5 results in corresponding shifts in the genome-wide RNAPII density profile. Elongation is particularly affected, with RECQL5 depletion causing a striking increase in the average rate, concurrent with increased stalling, pausing, arrest, and/or backtracking (transcription stress). RECQL5 therefore controls the movement of RNAPII across genes. Loss of RECQL5 also results in the loss or gain of genomic regions, with the breakpoints of lost regions located in genes and common fragile sites. The chromosomal breakpoints overlap with areas of elevated transcription stress, suggesting that RECQL5 suppresses such stress and its detrimental effects, and thereby prevents genome instability in the transcribed region of genes.


Assuntos
Instabilidade Genômica , RecQ Helicases/metabolismo , Elongação da Transcrição Genética , Transcrição Gênica , Genoma Humano , Células HEK293 , Humanos , RNA Polimerase II/metabolismo
5.
Genes Dev ; 30(4): 408-20, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883360

RESUMO

Genome instability is a recurring feature of tumorigenesis. Mutation in MLL2, encoding a histone methyltransferase, is a driver in numerous different cancer types, but the mechanism is unclear. Here, we present evidence that MLL2 mutation results in genome instability. Mouse cells in which MLL2 gene deletion can be induced display elevated levels of sister chromatid exchange, gross chromosomal aberrations, 53BP1 foci, and micronuclei. Human MLL2 knockout cells are characterized by genome instability as well. Interestingly, MLL2 interacts with RNA polymerase II (RNAPII) and RECQL5, and, although MLL2 mutated cells have normal overall H3K4me levels in genes, nucleosomes in the immediate vicinity of RNAPII are hypomethylated. Importantly, MLL2 mutated cells display signs of substantial transcription stress, and the most affected genes overlap with early replicating fragile sites, show elevated levels of γH2AX, and suffer frequent mutation. The requirement for MLL2 in the maintenance of genome stability in genes helps explain its widespread role in cancer and points to transcription stress as a strong driver in tumorigenesis.


Assuntos
Instabilidade Genômica/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transcrição Gênica/genética , Animais , Linhagem Celular , Dano ao DNA/genética , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Mutação , RNA Polimerase II/metabolismo , RecQ Helicases/metabolismo
7.
Genome Res ; 21(4): 505-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21393386

RESUMO

Gene fusions involving members of the RAF family of protein kinases have recently been identified as characteristic aberrations of low-grade astrocytomas, the most common tumors of the central nervous system in children. While it has been shown that these fusions cause constitutive activation of the ERK/MAPK pathway, very little is known about their formation. Here, we present a detailed analysis of RAF gene fusion breakpoints from a well-characterized cohort of 43 low-grade astrocytomas. Our findings show that the rearrangements that generate these RAF gene fusions may be simple or complex and that both inserted nucleotides and microhomology are common at the DNA breakpoints. Furthermore, we identify novel enrichment of microhomologous sequences in the regions immediately flanking the breakpoints. We thus provide evidence that the tandem duplications responsible for these fusions are generated by microhomology-mediated break-induced replication (MMBIR). Although MMBIR has previously been implicated in the pathogenesis of other diseases and the evolution of eukaryotic genomes, we demonstrate here that the proposed details of MMBIR are consistent with a recurrent rearrangement in cancer. Our analysis of repetitive elements, Z-DNA and sequence motifs in the fusion partners identified significant enrichment of the human minisatellite conserved sequence/χ-like element at one side of the breakpoint. Therefore, in addition to furthering our understanding of low-grade astrocytomas, this study provides insights into the molecular mechanistic details of MMBIR and the sequence of events that occur in the formation of genomic rearrangements.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Pontos de Quebra do Cromossomo , Fusão Gênica/genética , Quinases raf/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Replicação do DNA/genética , Ordem dos Genes , Rearranjo Gênico/genética , Humanos , Lactente , Masculino , Repetições Minissatélites , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Adulto Jovem
8.
Nucleic Acids Res ; 39(18): 7900-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724610

RESUMO

Despite the increasing wealth of available data, the structure of cancer transcriptional space remains largely unknown. Analysis of this space would provide novel insights into the complexity of cancer, assess relative implications in complex biological processes and responses, evaluate the effectiveness of cancer models and help uncover vital facets of cancer biology not apparent from current small-scale studies. We conducted a comprehensive analysis of pancreatic cancer-expression space by integrating data from otherwise disparate studies. We found (i) a clear separation of profiles based on experimental type, with patient tissue samples, cell lines and xenograft models forming distinct groups; (ii) three subgroups within the normal samples adjacent to cancer showing disruptions to biofunctions previously linked to cancer; and (iii) that ectopic subcutaneous xenografts and cell line models do not effectively represent changes occurring in pancreatic cancer. All findings are available from our online resource for independent interrogation. Currently, the most comprehensive analysis of pancreatic cancer to date, our study primarily serves to highlight limitations inherent with a lack of raw data availability, insufficient clinical/histopathological information and ambiguous data processing. It stresses the importance of a global-systems approach to assess and maximise findings from expression profiling of malignant and non-malignant diseases.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Interpretação Estatística de Dados , Mineração de Dados , Humanos , Neoplasias Pancreáticas/metabolismo , Análise de Componente Principal , Transcrição Gênica
9.
Nat Commun ; 13(1): 5632, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163168

RESUMO

Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD). Despite leading to aggressive disease and resistance to therapy in preclinical studies, the KRAS mutation does not predict patient outcome or response to treatment, presumably due to additional events modulating RAS pathways. To obtain a broader measure of RAS pathway activation, we developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in LUAD. We report evidence of RAS pathway oncogenic activation in 84% of LUAD, including 65% KRAS wild-type tumours, falling into four groups characterised by coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the classifications developed when considering only KRAS mutant tumours have significance in a broader cohort of patients. Critically, high RAS activity patient groups show adverse clinical outcome and reduced response to chemotherapy. Patient stratification using oncogenic RAS transcriptional activity instead of genetic alterations could ultimately assist in clinical decision-making.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Genes ras/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras
10.
Nature ; 430(6999): 573-8, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15229615

RESUMO

Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III-VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transcrição Gênica , Proteínas de Ciclo Celular , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Sequência Conservada/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Proteínas Fúngicas , Genes Fúngicos/genética , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Coesinas
11.
Sci Adv ; 6(18)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32917631

RESUMO

The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.

12.
Cell Rep ; 15(7): 1597-1610, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184836

RESUMO

In order to facilitate the identification of factors and pathways in the cellular response to UV-induced DNA damage, several descriptive proteomic screens and a functional genomics screen were performed in parallel. Numerous factors could be identified with high confidence when the screen results were superimposed and interpreted together, incorporating biological knowledge. A searchable database, bioLOGIC, which provides access to relevant information about a protein or process of interest, was established to host the results and facilitate data mining. Besides uncovering roles in the DNA damage response for numerous proteins and complexes, including Integrator, Cohesin, PHF3, ASC-1, SCAF4, SCAF8, and SCAF11, we uncovered a role for the poorly studied, melanoma-associated serine/threonine kinase 19 (STK19). Besides effectively uncovering relevant factors, the multiomic approach also provides a systems-wide overview of the diverse cellular processes connected to the transcription-related DNA damage response.


Assuntos
Dano ao DNA/efeitos da radiação , Proteômica , Raios Ultravioleta , Cromatina/metabolismo , Bases de Dados Factuais , Células HEK293 , Humanos , Internet , Leupeptinas/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos da radiação , Proteínas Nucleares/metabolismo , Fosforilação/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/efeitos dos fármacos , Proteoma/efeitos da radiação , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Transcrição Gênica/efeitos da radiação , Ubiquitinação/efeitos da radiação , Interface Usuário-Computador
13.
J Invest Dermatol ; 129(6): 1562-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19131950

RESUMO

Cutaneous squamous cell carcinomas (cSCCs) are the second most frequent cancers in fair-skinned populations; yet, because of their genetic heterogeneity, the key molecular events in cSCC tumorigenesis remain poorly defined. We have used single nucleotide polymorphism microarray analysis to examine genome-wide allelic imbalance in 60 cSCCs using paired non-tumor samples. The most frequent recurrent aberrations were loss of heterozygosity at 3p and 9p, observed in 39 (65%) and 45 (75%) tumors, respectively. Microdeletions at 9p23 within the protein tyrosine phosphatase receptor type D (PTPRD) locus were identified in 9 (15%) samples, supporting a tumor suppressor role for PTPRD in cSCC. In addition, microdeletions at 3p14.2 were detected in 3 (5%) cSCCs, implicating the fragile histidine triad (FHIT) gene as a possible target for inactivation. Statistical analysis revealed that well-differentiated cSCCs demonstrated significantly fewer aberrations than moderately and poorly differentiated cSCCs; yet, despite a lower rate of allelic imbalance, some specific aberrations were observed equally frequently in both groups. No correlation was established between the frequency of chromosomal aberrations and immune or human papillomavirus status. Our data suggest that well-differentiated tumors are a genetically distinct subpopulation of cSCC.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Hidrolases Anidrido Ácido/genética , Alelos , Mapeamento Cromossômico , Análise por Conglomerados , Deleção de Genes , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Perda de Heterozigosidade , Modelos Genéticos , Proteínas de Neoplasias/genética , Risco
14.
J Biol Chem ; 283(52): 36132-9, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18978354

RESUMO

Fanconi anemia (FA) is a heritable human cancer-susceptibility disorder, delineating a genetically heterogenous pathway for the repair of replication-blocking lesions such as interstrand DNA cross-links. Here we demonstrate that one component of this pathway, FANCJ, is a structure-specific DNA helicase that dissociates guanine quadruplex DNA (G4 DNA) in vitro. Moreover, in contrast with previously identified G4 DNA helicases, such as the Bloom's helicase (BLM), FANCJ unwinds G4 substrates with 5'-3' polarity. In the FA-J human patient cell line EUFA0030 the loss of FANCJ G4 unwinding function correlates with the accumulation of large genomic deletions in the vicinity of sequences, which match the G4 DNA signature. Together these findings support a role for FANCJ in the maintenance of potentially unstable genomic G/C tracts during replication.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA Helicases/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Quadruplex G , RecQ Helicases/metabolismo , Ligação Competitiva , Linhagem Celular , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , Replicação do DNA , Deleção de Genes , Predisposição Genética para Doença , Genoma , Humanos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA