Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 69: 1-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24825319

RESUMO

Both the misfolding of α-synuclein and mitochondrial dysfunction are considered two major contributors to Parkinson's disease (PD). However, the relationship between the two in normal and PD states remains unclear. Here, we report that voltage-dependent anion channel 1 (VDAC1), a major component of the outer mitochondrial membrane known to regulate mitochondrial functions, is down-regulated in response to α-synuclein accumulation and aggregation. Stereological analysis revealed that 58.33% of the neurons were VDAC1 immunoreactive in the remaining neuromelanin laden neurons in the PD group while 87.48% of the nigral neurons were VDAC1 immunoreactive in the age-matched control group. The relative levels of VDAC1 were significantly decreased in PD nigral neurons when compared to age-matched controls. In PD, this decrease was significantly greater in nigral neurons with α-synuclein inclusions. VDAC1 was observed in fibers with granular α-synuclein but not in fibers with aggregated α-synuclein. Viral vector-mediated overexpression of mutant human α-synuclein (A30P) in rats resulted in significantly decreased VDAC1 in nigral neurons and striatal fibers. These results indicate that mitochondrial function associated with VDAC1 is decreased in sporadic and experimental PD, and this decrease is associated with α-synuclein accumulation and aggregation.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Ratos Sprague-Dawley , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética
2.
Mov Disord ; 29(8): 999-1009, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24898698

RESUMO

Parkinson's disease (PD) is a multifocal degenerative disorder for which there is no cure. The majority of cases are sporadic with unknown etiology. Recent data indicate that untreated patients with de novo PD have increased colonic permeability and that both de novo and premotor patients have pathological expression of α-synuclein (α-syn) in their colon. Both endpoints potentially can serve as disease biomarkers and even may initiate PD events through gut-derived, lipopolysaccharide (LPS)-induced neuronal injury. Animal models could be ideal for interrogating the potential role of the intestines in the pathogenesis of PD; however, few current animal models of PD encompass these nonmotor features. We sought to establish a progressive model of PD that includes the gastrointestinal (GI) dysfunction present in human patients. C57/BL6 mice were systemically administered one dose of either LPS (2.5 mg/kg) or saline and were sacrificed in monthly intervals (n = 5 mice for 5 months) to create a time-course. Small and large intestinal permeability was assessed by analyzing the urinary output of orally ingested sugar probes through capillary column gas chromatography. α-Syn expression was assessed by counting the number of mildly, moderately, and severely affected myenteric ganglia neurons throughout the GI tract, and the counts were validated by quantitative optical density measurements. Nigrostriatal integrity was assessed by tyrosine hydroxylase immunohistochemistry stereology and densitometry. LPS caused an immediate and progressive increase in α-syn expression in the large intestine but not in the small intestine. Intestinal permeability of the whole gut (large and small intestines) progressively increased between months 2 and 4 after LPS administration but returned to baseline levels at month 5. Selective measurements demonstrated that intestinal permeability in the small intestine remained largely intact, suggesting that gut leakiness was predominately in the large intestine. Phosphorylated serine 129-α-syn was identified in a subset of colonic myenteric neurons at months 4 and 5. Although these changes were observed in the absence of nigrostriatal degeneration, an abrupt but insignificant increase in brainstem α-syn was observed that paralleled the restoration of permeability. No changes were observed over time in controls. LPS, an endotoxin used to model PD, causes sequential increases in α-syn immunoreactivity, intestinal permeability, and pathological α-syn accumulation in the colon in a manner similar to that observed in patients with PD. These features are observed without nigrostriatal degeneration and incorporate PD features before the motor syndrome. This allows for the potential use of this model in testing neuroprotective and disease-modifying therapies, including intestinal-directed therapies to fortify intestinal barrier integrity.


Assuntos
Colo/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Gasosa , Colo/efeitos dos fármacos , Colo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fármacos Gastrointestinais/urina , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/urina , Permeabilidade/efeitos dos fármacos , Polissacarídeos/toxicidade , Índice de Gravidade de Doença , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Nervo Vago/metabolismo , Nervo Vago/patologia
3.
New Phytol ; 198(4): 1085-1095, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23560984

RESUMO

· Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits. · Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgression · The high-glucoraphanin broccoli hybrids contained 2.5-3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforté broccoli. · The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studies.


Assuntos
Brassica/genética , Brassica/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Imidoésteres/metabolismo , Sequência de Bases , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Flores/metabolismo , Alimentos , Glucosinolatos/química , Humanos , Hibridização Genética , Imidoésteres/química , Metionina/metabolismo , Dados de Sequência Molecular , Oximas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Sulfóxidos , Enxofre/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Drug Alcohol Depend ; 225: 108746, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098381

RESUMO

INTRODUCTION: Methamphetamine is a potent psychomotor stimulant, and methamphetamine abusers are up to three times more likely to develop Parkinson's disease (PD) later in life. Prodromal PD may involve gut inflammation and the accumulation of toxic proteins that are transported from the enteric nervous system to the central nervous system to mediate, in part, the degeneration of dopaminergic projections. We hypothesized that self-administration of methamphetamine in rats produces a gut and brain profile that mirrors pre-motor and early-stage PD. METHODS: Rats self-administered methamphetamine in daily 3 h sessions for two weeks. Motor function was assessed before self-administration, during self-administration and throughout the 56 days of forced abstinence. Assays for pathogenic markers (tyrosine hydroxylase, glial fibrillary acidic protein (GFAP), α-synuclein) were conducted on brain and gut tissue collected at one or 56 days after cessation of methamphetamine self-administration. RESULTS: Motor deficits emerged by day 14 of forced abstinence and progressively worsened up to 56 days of forced abstinence. In the pre-motor stage, we observed increased immunoreactivity for GFAP and α-synuclein within the ganglia of the myenteric plexus in the distal colon. Increased α-synuclein was also observed in the substantia nigra pars compacta. At 56 days, GFAP and α-synuclein normalized in the gut, but the accumulation of nigral α-synuclein persisted, and the dorsolateral striatum exhibited a significant loss of tyrosine hydroxylase. CONCLUSION: The pre-motor profile is consistent with gut inflammation and gut/brain α-synuclein accumulation associated with prodromal PD and the eventual development of the neurological disease.


Assuntos
Metanfetamina , Doença de Parkinson , Animais , Encéfalo/metabolismo , Ratos , Substância Negra/metabolismo , alfa-Sinucleína
5.
J Reprod Med ; 48(3): 201-3, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12698780

RESUMO

BACKGROUND: Induction of ovulation in the course of infertility treatment is increasingly commonplace in the 21st century. As a consequence, it can be expected that previously unrecognized complications of the procedure will be reported. CASE: A 36-year-old woman presented with severe pelvic pain and hyponatremia after ovarian stimulation with gonadotropins. After admission with a presumptive diagnosis of ovarian hyperstimulation syndrome, a further family history revealed acute intermittent porphyria. A 24-hour urine collection confirmed the diagnosis. CONCLUSION: Hormonal therapy for induction of ovulation in the course of infertility treatment may precipitate attacks of acute intermittent porphyria. A careful history must be undertaken prior to administration of such hormonal preparations.


Assuntos
Hormônio Foliculoestimulante/efeitos adversos , Hormônios/efeitos adversos , Indução da Ovulação/efeitos adversos , Porfiria Aguda Intermitente/induzido quimicamente , Adulto , Feminino , Humanos , Porfiria Aguda Intermitente/diagnóstico , Porfiria Aguda Intermitente/terapia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA