Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
2.
Cell ; 151(1): 138-52, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021221

RESUMO

Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.


Assuntos
Aterosclerose/imunologia , Colesterol/biossíntese , Desmosterol/metabolismo , Células Espumosas/metabolismo , Metabolismo dos Lipídeos , Transcriptoma , Animais , Aterosclerose/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Células Espumosas/imunologia , Técnicas de Silenciamento de Genes , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
3.
J Card Fail ; 28(3): 422-430, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34534666

RESUMO

BACKGROUND: Clinical congestion is associated with adverse outcomes in patients with heart failure. The pathophysiological mediators of this association remain uncertain. METHODS AND RESULTS: We prospectively enrolled a cohort of patients with heart failure and reduced left ventricular ejection fraction and performed a detailed clinical examination followed on the same day by an invasive right heart catheterization and blood sampling for biomarkers. High-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were measured. A clinical congestion score was calculated based on jugular venous pressure (cm H20 <10 = 0, 10-14 = 1, >14 = 2 points), bendopnea (0 vs 1), a third heart sound (0 vs 1), or peripheral edema (0-2). Congestion was categorized into tiers as absent (0 points), mild (1 point), or moderate to severe (≥ 2 points). We tested for associations of high-sensitivity troponin T, NT-proBNP, and elevated ventricular filling pressures with clinical congestion in both univariate and multivariable analyses. Of 153 participants, 65 (42%) had absent, 35 mild (23%), and 53 (35%) had moderate to severe clinical congestion. Congestion tier was associated with higher NT-proBNP and hs-troponin levels, and the right atrial pressure and pulmonary capillary wedge pressure (P < .001 for each). Increased congestion tier was also associated with the coexistent presence of elevated troponin T (≥52 ng/L), NT-proBNP (≥1000 pg/mL), and pulmonary capillary wedge pressure (≥22 mm Hg). Specifically, 78% of those with absent clinical congestion had 0 to 1 of these findings, whereas 75% of those with moderate-severe congestion had 2 or all 3 of these abnormalities (P < .001). An elevated hs-troponin was associated with mild or greater clinical congestion (odds ratio 3, 95% confidence interval 1.2-7.5, P = .02) in multivariable analysis adjusting for potential confounders including the right atrial pressure, pulmonary capillary wedge pressure, and NT-proBNP levels. CONCLUSIONS: Clinical congestion is a phenotype in which there is a high coexistent presence of elevated ventricular filling pressures, elevated natriuretic peptide levels, and subclinical myocardial injury. An elevated troponin was associated with clinical congestion in multivariable models that adjusted for ventricular filling pressures and natriuretic peptide levels. These data strengthen the evidence base for an association of elevated troponin with clinical congestion, suggesting that subclinical myocardial injury may be an important contributor to the pathophysiology of the congested state.


Assuntos
Insuficiência Cardíaca , Biomarcadores , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Humanos , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Fenótipo , Prognóstico , Volume Sistólico/fisiologia , Troponina T , Função Ventricular Esquerda
4.
Magn Reson Med ; 85(5): 2462-2476, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33226685

RESUMO

PURPOSE: The purpose of this study is to demonstrate a method for specific absorption rate (SAR) reduction for 2D T2 -FLAIR MRI sequences at 7 T by predicting the required adiabatic radiofrequency (RF) pulse power and scaling the RF amplitude in a slice-wise fashion. METHODS: We used a time-resampled frequency-offset corrected inversion (TR-FOCI) adiabatic pulse for spin inversion in a T2 -FLAIR sequence to improve B1+ homogeneity and calculated the pulse power required for adiabaticity slice-by-slice to minimize the SAR. Drawing on the implicit B1+ inhomogeneity in a standard localizer scan, we acquired 3D AutoAlign localizers and SA2RAGE B1+ maps in 28 volunteers. Then, we trained a convolutional neural network (CNN) to estimate the B1+ profile from the localizers and calculated pulse scale factors for each slice. We assessed the predicted B1+ profiles and the effect of scaled pulse amplitudes on the FLAIR inversion efficiency in oblique transverse, sagittal, and coronal orientations. RESULTS: The predicted B1+ amplitude maps matched the measured ones with a mean difference of 9.5% across all slices and participants. The slice-by-slice scaling of the TR-FOCI inversion pulse was most effective in oblique transverse orientation and resulted in a 1 min and 30 s reduction in SAR induced delay time while delivering identical image quality. CONCLUSION: We propose a SAR reduction technique based on the estimation of B1+ profiles from standard localizer scans using a CNN and show that scaling the inversion pulse power slice-by-slice for FLAIR sequences at 7T reduces SAR and scan time without compromising image quality.


Assuntos
Aprendizado Profundo , Encéfalo , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética , Ondas de Rádio , Cintilografia
5.
Geophys Res Lett ; 48(11): e2020GL091692, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219829

RESUMO

A reduced-physics model is employed at 1/25° to 1/100° global resolution to determine (a) if linear dynamics can reproduce the observed low-mode M2 internal tide, (b) internal-tide sensitivity to bathymetry, stratification, surface tides, and dissipation parameterizations, and (c) the amount of power transferred to the nonstationary internal tide. The simulations predict 200 GW of mode-1 internal-tide generation, consistent with a general circulation model and semianalytical theory. Mode-1 energy is sensitive to damping, but a simulation using parameterizations for wave drag and wave-mean interaction predicts 84% of satellite observed sea-surface height amplitude variance on a 1° × 1° grid. The simulation energy balance indicates that 16% of stationary mode-1 energy is scattered to modes 2-4 and negligible energy propagates onto the shelves. The remaining 84% of energy is lost through parameterizations for high-mode scattering over rough topography (54%) and wave-mean interactions that transfer energy to the nonstationary internal tide (29%).

6.
Neurourol Urodyn ; 39(1): 13-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578764

RESUMO

AIMS: Overactive bladder (OAB) remains underdiagnosed with many patients never seeking medical help. Methods to aid early identification and treatment of OAB will be hugely beneficial, and to this end several case-finding tools have been developed. The aim of this review is to critically analyse the literature regarding case-finding tools that have been validated specifically for the detection of OAB in women. METHODS: A literature search of the PubMed database was performed until July 2019 using the search terms screening and OAB or lower urinary tract symptoms (LUTS). Names of individual case-finding tools included in the sixth International Consultation on Incontinence were also searched on the PubMed database. Original articles on the validation of patient-reported screening questionnaires for the detection of OAB in women were included. RESULTS: A total of 22 studies met the inclusion criteria and were included in this review. The validation studies of 11 case-finding tools were assessed. All demonstrated good sensitivity and specificity for OAB or incontinence symptoms, and five tools have been most extensively validated for this condition (bladder control self-assessment questionnaire [B-SAQ], OAB-V8, OAB-V3, OAB symptom score, and questionnaire for urinary incontinence diagnosis). B-SAQ and OAB-V8 demonstrated high sensitivity whilst actionable bladder symptom screening tool was the most specific. B-SAQ was the only tool in this review to encompass screening for "red-flag" symptoms (hematuria, pain), and it has also been validated in a primary care setting. CONCLUSIONS: Several case-finding tools have been demonstrated to have high accuracy for diagnosing OAB in women. B-SAQ encompasses other LUTS as well as "red-flag" symptoms; its use should be promoted in primary care.


Assuntos
Bexiga Urinária Hiperativa/diagnóstico , Mulheres , Feminino , Humanos , Bexiga Urinária Hiperativa/terapia , Incontinência Urinária por Estresse/diagnóstico , Incontinência Urinária por Estresse/terapia
7.
J Biol Chem ; 293(25): 9912-9921, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29632068

RESUMO

Lipids display large structural complexity, with ∼40,000 different lipids identified to date, ∼4000 of which are sphingolipids. A critical factor determining the biological activities of the sphingolipid, ceramide, and of more complex sphingolipids is their N-acyl chain length, which in mammals is determined by a family of six ceramide synthases (CerS). Little information is available about the CerS regions that determine specificity toward different acyl-CoA substrates. We previously demonstrated that substrate specificity resides in a region of ∼150 residues in the Tram-Lag-CLN8 domain. Using site-directed mutagenesis and biochemical analyses, we now narrow specificity down to an 11-residue sequence in a loop located between the last two putative transmembrane domains (TMDs) of the CerS. The specificity of a chimeric protein, CerS5(299-309→CerS2), based on the backbone of CerS5 (which generates C16-ceramide), but containing 11 residues from CerS2 (which generates C22-C24-ceramides), was altered such that it generated C22-C24 and other ceramides. Moreover, a chimeric protein, CerS4(291-301→CerS2), based on CerS4 (which normally generates C18-C22 ceramides) displayed significant activity toward C24:1-CoA. Additional data supported the notion that substitutions of these 11 residues alter the specificities of the CerS toward their cognate acyl-CoAs. Our findings may suggest that this short loop may restrict adjacent TMDs, leading to a more open conformation in the membrane, and that the CerS acting on shorter acyl-CoAs may have a longer, more flexible loop, permitting TMD flexibility. In summary, we have identified an 11-residue region that determines the acyl-CoA specificity of CerS.


Assuntos
Acil Coenzima A/metabolismo , Ceramidas/metabolismo , Oxirredutases/classificação , Oxirredutases/metabolismo , Esfingolipídeos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sistemas CRISPR-Cas , Humanos , Oxirredutases/antagonistas & inibidores , Homologia de Sequência , Especificidade por Substrato
8.
J Biol Chem ; 292(12): 5110-5122, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28087695

RESUMO

This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the palmitic acid is delivered as a complex with delipidated BSA (2:1, mol/mol) and does not induce significant lipotoxicity. Based on precursor labeling, the flux through SM synthase also increases, which is exacerbated in HepG2-SMS1 cells. In contrast, palmitate-induced lipid droplet formation is significantly reduced in HepG2-SMS1 cells. [14C]Choline and [3H]palmitate tracking shows that SMS1 overexpression apparently affects the partitioning of palmitate-enriched diacylglycerol between the phosphatidylcholine and triacylglycerol pathways, to the benefit of the former. Furthermore, triacylglycerols from HepG2-SMS1 cells are enriched in polyunsaturated fatty acids, which is indicative of active remodeling. Together, these results delineate novel metabolic interactions between glycerolipids and sphingolipids.


Assuntos
Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Transferases (Outros Grupos de Fosfato Substituídos)/análise , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Triglicerídeos/metabolismo , Regulação para Cima
9.
J Biol Chem ; 292(18): 7588-7597, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28320857

RESUMO

Ceramide and more complex sphingolipids constitute a diverse group of lipids that serve important roles as structural entities of biological membranes and as regulators of cellular growth, differentiation, and development. Thus, ceramides are vital players in numerous diseases including metabolic and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes of ACBP-/- mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial importance in understanding the regulation of ceramide metabolism in pathogenesis.


Assuntos
Ceramidas/biossíntese , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Animais , Linhagem Celular , Ceramidas/genética , Inibidor da Ligação a Diazepam/genética , Ácidos Graxos/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Hum Mol Genet ; 23(4): 843-54, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24064337

RESUMO

Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinson's disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) are characterized by profound neurological impairment and neuronal cell death. We have previously described the progression of neuropathological changes in a mouse model of nGD. We now examine the relationship between glycosphingolipid accumulation and initiation of pathology at two pre-symptomatic stages of the disease in four different brain areas which display differential degrees of susceptibility to GCase deficiency. Liquid chromatography electrospray ionization tandem mass spectrometry demonstrated glucosylceramide and psychosine accumulation in nGD brains prior to the appearance of neuroinflammation, although only glucosylceramide accumulation correlated with neuroinflammation and neuron loss. Levels of other sphingolipids, including the pro-apoptotic lipid, ceramide, were mostly unaltered. Transmission electron microscopy revealed that glucosylceramide accumulation occurs in neurons, mostly in the form of membrane-delimited pseudo-tubules located near the nucleus. Highly disrupted glucosylceramide-storing cells, which are likely degenerating neurons containing massive inclusions, numerous autophagosomes and unique ultrastructural features, were also observed. Together, our results indicate that a certain level of neuronal glucosylceramide storage is required to trigger neuropathological changes in affected brain areas, while other brain areas containing similar glucosylceramide levels are unaltered, presumably because of intrinsic differences in neuronal properties, or in the neuronal environment, between various brain regions.


Assuntos
Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doença de Gaucher/patologia , Glucosilceramidase/deficiência , Glucosilceramidase/genética , Humanos , Lactosilceramidas/metabolismo , Camundongos , Camundongos Knockout , Neurônios/patologia , Psicosina/metabolismo , Esfingomielinas/metabolismo
11.
J Lipid Res ; 56(3): 722-736, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598080

RESUMO

The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an "omics" approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.


Assuntos
Lipídeos/sangue , Lipídeos/urina , Hepatopatia Gordurosa não Alcoólica , Polimorfismo de Nucleotídeo Único , Adulto , Biomarcadores/metabolismo , Biomarcadores/urina , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/urina
12.
J Lipid Res ; 55(1): 53-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163422

RESUMO

Ceramide (Cer) is involved in the regulation of several cellular processes by mechanisms that depend on Cer-induced changes on membrane biophysical properties. Accumulating evidence shows that Cers with different N-acyl chain composition differentially impact cell physiology, which may in part be due to specific alterations in membrane biophysical properties. We now address how the sphingolipid (SL) N-acyl chain affects membrane properties in cultured human embryonic kidney cells by overexpressing different Cer synthases (CerSs). Our results show an increase in the order of cellular membranes in CerS2-transfected cells caused by the enrichment in very long acyl chain SLs. Formation of Cer upon treatment of cells with bacterial sphingomyelinase promoted sequential changes in the properties of the membranes: after an initial increase in the order of the fluid plasma membrane, reorganization into domains with gel-like properties whose characteristics are dependent on the acyl chain structure of the Cer was observed. Moreover, the extent of alterations of membrane properties correlates with the amount of Cer formed. These data reinforce the significance of Cer-induced changes on membrane biophysical properties as a likely molecular mechanism by which different acyl chain Cers exert their specific biological actions.


Assuntos
Membrana Celular/metabolismo , Ceramidas/biossíntese , Esfingomielina Fosfodiesterase/fisiologia , Polarização de Fluorescência , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
J Biol Chem ; 288(7): 4947-56, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23283968

RESUMO

Ceramide is a key intermediate in the pathway of sphingolipid biosynthesis and is an important intracellular messenger. We recently generated a ceramide synthase 2 (CerS2) null mouse that cannot synthesize very long acyl chain (C22-C24) ceramides. This mouse displays severe and progressive hepatopathy. Significant changes were observed in the sphingolipid profile of CerS2 null mouse liver, including elevated C16-ceramide and sphinganine levels in liver and in isolated mitochondrial fractions. Because ceramide may be involved in reactive oxygen species (ROS) formation, we examined whether ROS generation was affected in CerS2 null mice. Levels of a number of anti-oxidant enzymes were elevated, as were lipid peroxidation, protein nitrosylation, and ROS. ROS were generated from mitochondria due to impaired complex IV activity. C16-ceramide, sphingosine, and sphinganine directly inhibited complex IV activity in isolated mitochondria and in mitoplasts, whereas other ceramide species, sphingomyelin, and diacylglycerol were without effect. A fluorescent analog of sphinganine accumulated in mitochondria. Heart mitochondria did not display a substantial alteration in the sphingolipid profile or in complex IV activity. We suggest that C16-ceramide and/or sphinganine induce ROS formation through the modulation of mitochondrial complex IV activity, resulting in chronic oxidative stress. These results are of relevance for understanding modulation of ROS signaling by sphingolipids.


Assuntos
Ceramidas/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/genética , Esfingosina N-Aciltransferase/genética , Animais , Transporte de Elétrons , Peroxidação de Lipídeos , Lipídeos/química , Fígado/patologia , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Nitrogênio/química , Estresse Oxidativo , Oxirredutases/metabolismo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Esfingolipídeos/química , Esfingosina N-Aciltransferase/metabolismo
14.
J Biol Chem ; 287(25): 21025-33, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539345

RESUMO

Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS) that each use acyl-CoAs of defined chain length for N-acylation of the sphingoid long chain base. CerS mRNA expression and enzymatic activity do not always correlate with the sphingolipid acyl chain composition of a particular tissue, suggesting post-translational mechanism(s) of regulation of CerS activity. We now demonstrate that CerS activity can be modulated by dimer formation. Under suitable conditions, high M(r) CerS complexes can be detected by Western blotting, and various CerS co-immunoprecipitate. CerS5 activity is inhibited in a dominant-negative fashion by co-expression with catalytically inactive CerS5, and CerS2 activity is enhanced by co-expression with a catalytically active form of CerS5 or CerS6. In a constitutive heterodimer comprising CerS5 and CerS2, the activity of CerS2 depends on the catalytic activity of CerS5. Finally, CerS dimers are formed upon rapid stimulation of ceramide synthesis by curcumin. Together, these data demonstrate that ceramide synthesis can be regulated by the formation of CerS dimers and suggest a novel way to generate the acyl chain composition of ceramide (and downstream sphingolipids), which may depend on the interaction of CerS with each other.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Multimerização Proteica/fisiologia , RNA Mensageiro/biossíntese , Esfingosina N-Aciltransferase/metabolismo , Catálise , Ceramidas/biossíntese , Ceramidas/genética , Células HEK293 , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , RNA Mensageiro/genética , Esfingosina N-Aciltransferase/genética
15.
J Biol Chem ; 287(5): 3197-206, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22144673

RESUMO

In mammals, ceramides are synthesized by a family of six ceramide synthases (CerS), transmembrane proteins located in the endoplasmic reticulum, where each use fatty acyl-CoAs of defined chain length for ceramide synthesis. Little is known about the molecular features of the CerS that determine acyl-CoA selectivity. We now explore CerS structure-function relationships by constructing chimeric proteins combining sequences from CerS2, which uses C22-CoA for ceramide synthesis, and CerS5, which uses C16-CoA. CerS2 and -5 are 41% identical and 63% similar. Chimeras containing approximately half of CerS5 (from the N terminus) and half of CerS2 (from the C terminus) were catalytically inactive. However, the first 158 residues of CerS5 could be replaced with the equivalent region of CerS2 without affecting specificity of CerS5 toward C16-CoA; likewise, the putative sixth transmembrane domain (at the C terminus) of CerS5 could be replaced with the corresponding sequence of CerS2 without affecting CerS5 specificity. Remarkably, a chimeric CerS5/2 protein containing the first 158 residues and the last 83 residues of CerS2 displayed specificity toward C16-CoA, and a chimeric CerS2/5 protein containing the first 150 residues and the last 79 residues of CerS5 displayed specificity toward C22-CoA, demonstrating that a minimal region of 150 residues is sufficient for retaining CerS specificity.


Assuntos
Oxirredutases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Animais , Humanos , Camundongos , Oxirredutases/genética , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/fisiologia
16.
J Biol Chem ; 286(34): 30022-33, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21705317

RESUMO

Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.


Assuntos
Astrócitos/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Encéfalo/metabolismo , Galactosilceramidas/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Galactosilceramidas/genética , Camundongos , Camundongos Mutantes , Microglia/patologia , Bainha de Mielina/patologia , Esfingosina N-Aciltransferase/metabolismo
17.
J Lipid Res ; 52(8): 1583-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21586681

RESUMO

This study describes the use of a stable-isotope labeled precursor ([U-¹³C]palmitate) to analyze de novo sphingolipid biosynthesis by tandem mass spectrometry. It also describes factors to consider in interpreting the data, including the isotope's location (¹³C appears in three isotopomers and isotopologues: [M + 16] for the sphingoid base or N-acyl fatty acid, and [M + 32] for both); the isotopic enrichment of palmitoyl-CoA; and its elongation, desaturation, and incorporation into N-acyl-sphingolipids. For HEK293 cells incubated with 0.1 mM [U-¹³C]palmitic acid, ∼60% of the total palmitoyl-CoA was ¹³C-labeled by 3 h (which was near isotopic equilibrium); with this correction, the rates of de novo biosynthesis of C16:0-ceramide, C16:0-monohexosylceramide, and C16:0-sphingomyelins were 62 ± 3, 13 ± 2, and 60 ± 11 pmol/h per mg protein, respectively, which are consistent with an estimated rate of appearance of C16:0-ceramide using exponential growth modeling (119 ± 11 pmol/h per mg protein). Including estimates for the very long-chain fatty acyl-CoAs, the overall rate of sphingolipid biosynthesis can be estimated to be at least ∼1.6-fold higher. Thus, consideration of these factors gives a more accurate picture of de novo sphingolipid biosynthesis than has been possible to-date, while acknowledging that there are inherent limitations to such approximations.


Assuntos
Isótopos de Carbono/metabolismo , Palmitatos/metabolismo , Palmitoil Coenzima A/biossíntese , Esfingolipídeos , Espectrometria de Massas em Tandem/métodos , Acilação , Isótopos de Carbono/química , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Palmitatos/química , Esfingolipídeos/análise , Esfingolipídeos/biossíntese , Esfingolipídeos/química
18.
J Lipid Res ; 52(6): 1073-1083, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21415121

RESUMO

Sphingolipids are structurally diverse and their metabolic pathways highly complex, which makes it difficult to follow all of the subspecies in a biological system, even using "lipidomic" approaches. This report describes a method to use transcriptomic data to visualize and predict potential differences in sphingolipid composition, and it illustrates its use with published data for cancer cell lines and tumors. In addition, several novel sphingolipids that were predicted to differ between MDA-MB-231 and MCF7 cells based on published microarray data for these breast cancer cell lines were confirmed by mass spectrometry. For the data that we were able to find for these comparisons, there was a significant match between the gene expression data and sphingolipid composition (P < 0.001 by Fisher's exact test). Upon considering the large number of gene expression datasets produced in recent years, this simple integration of two types of "omic" technologies ("transcriptomics" to direct "sphingolipidomics") might facilitate the discovery of useful relationships between sphingolipid metabolism and disease, such as the identification of new biomarkers.


Assuntos
Adenocarcinoma Papilar , Neoplasias da Mama/metabolismo , Carcinoma Ductal , Proteômica/métodos , Esfingolipídeos/genética , Algoritmos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/análise , RNA Mensageiro/isolamento & purificação , Esfingolipídeos/análise , Esfingolipídeos/química , Esfingolipídeos/metabolismo
19.
J Biol Chem ; 285(49): 38568-79, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20876532

RESUMO

Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo(2)-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 10(9) molecules per cell in 24 h, based on the sum of subspecies analyzed by "lipidomic" mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function connected with it? The sphingolipids arise primarily from de novo biosynthesis based on [U-(13)C]palmitate labeling, inhibition by ISP1 (myriocin), and an apparent induction of many steps of the pathway (according to the distribution of metabolites and microarray analysis), with the exception of ceramide, which is also produced from pre-existing sources. Nonetheless, the activated RAW264.7 cells have a higher number of sphingolipids per cell because KLA inhibits cell division; thus, the cells are larger and contain increased numbers of membrane vacuoles termed autophagosomes, which were detected by the protein marker GFP-LC3. Indeed, de novo biosynthesis of sphingolipids performs an essential structural and/or signaling function in autophagy because autophagosome formation was eliminated by ISP1 in KLA-stimulated RAW264.7 cells (and mutation of serine palmitoyltransferase in CHO-LYB cells); furthermore, an anti-ceramide antibody co-localizes with autophagosomes in activated RAW264.7 cells versus the Golgi in unstimulated or ISP1-inhibited cells. These findings establish that KLA induces profound changes in sphingolipid metabolism and content in this macrophage-like cell line, apparently to produce sphingolipids that are necessary for formation of autophagosomes, which are thought to play important roles in the mechanisms of innate immunity.


Assuntos
Autofagia/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Esfingolipídeos/biossíntese , Receptor 4 Toll-Like/agonistas , Animais , Autofagia/genética , Autofagia/imunologia , Células CHO , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/imunologia , Linhagem Celular , Cricetinae , Cricetulus , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/metabolismo , Imunidade Inata/imunologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Camundongos , Mutação , Fagossomos/imunologia , Fagossomos/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/imunologia , Serina C-Palmitoiltransferase/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Esfingolipídeos/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
20.
J Neuroeng Rehabil ; 8: 43, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21816084

RESUMO

BACKGROUND: Non-linear approaches to assessment of postural control can provide insight that compliment linear approaches. Control entropy (CE) is a recently developed statistical tool from non-linear dynamical systems used to assess the complexity of non-stationary signals. We have previously used CE of high resolution accelerometry in running to show decreased complexity with exhaustive exercise. The purpose of this study was to determine if complexity of postural control decreases following fatiguing exercise using CE. METHODS: Ten subjects (5 M/5 F; 25 ± 3 yr; 169.4 ± 11.7 cm; 79.0 ± 16.9 kg) consented to participation approved by Western Oregon University IRB and completed two trials separated by 2-7 days. Trials consisted of two single-legged balance tests separated by two Wingate anaerobic tests (WAnT; PreFat/PostFat), or rest period (PreRest/PostRest). Balance tests consisted of a series of five single-legged stances, separated by 30 s rest, performed while standing on the dominant leg for 15-s with the participant crossing the arms over the chest and flexing the non-dominant knee to 90 degrees. High resolution accelerometers (HRA) were fixed superficial to L3/L4 at the approximate center of mass (COM). Triaxial signals from the HRA were streamed in real time at 625 Hz. COM accelerations were recorded in g's for vertical (VT), medial/lateral (ML), and anterior/posterior (AP) axes. A newly developed statistic (R-test) was applied to group response shapes generated by Karhunen Loeve (KL) transform modes resulting from Control Entropy (CE) analysis. RESULTS: R-tests showed a significant mean vector difference (p < .05) within conditions, between axes in all cases, except PostFat, indicating the shape of the complexity response was different in these cases. R-test between conditions, within axis, differences were only present in PostFat for AP vs. PreFat (p < .05). T-tests showed a significantly higher overall CE PostFat in VT and ML compared to PreFat and PostRest (p < .0001). PostFat CE was also higher than PostRest in AP (p < .0001). CONCLUSIONS: These data indicate that fatiguing exercise eliminates the differential complexity response between axes, but increases complexity in all axes compared to the non-fatigued condition. This has implications with regard to the effects of fatigue on strategies of the control system to maintain postural control.


Assuntos
Extremidade Inferior/fisiologia , Fadiga Muscular/fisiologia , Dinâmica não Linear , Equilíbrio Postural/fisiologia , Adulto , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA