Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Oral Biol ; 164: 106004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776586

RESUMO

OBJECTIVE: The red-complex bacteria Porphyromonas gingivalis and Tannerella forsythia together with Fusobacterium nucleatum are essential players in periodontitis. This study investigated the bacterial interplay with human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) which act in the acute phase of periodontal infection. DESIGN: The capability of the bacteria to induce an inflammatory response as well as their viability, cellular adhesion and invasion were analyzed upon mono- and co-infections of hPDL-MSCs to delineate potential synergistic or antagonistic effects. The expression level and concentration of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were measured using qRT-PCR and ELISA. Viability, invasion, and adhesion were determined quantitatively using agar plate culture and qualitatively by confocal microscopy. RESULTS: Viability of P. gingivalis and T. forsythia but not F. nucleatum was preserved in the presence of hPDL-MSCs, even in an oxygenated environment. F. nucleatum significantly increased the expression and concentration of IL-6, IL-8 and MCP-1 in hPDL-MSCs, while T. forsythia and P. gingivalis caused only a minimal inflammatory response. Co-infections in different combinations had no effect on the inflammatory response. Moreover, P. gingivalis mitigated the increase in cytokine levels elicited by F. nucleatum. Both red-complex bacteria adhered to and invaded hPDL-MSCs in greater numbers than F. nucleatum, with only a minor effect of co-infections. CONCLUSIONS: Oral bacteria of different pathogenicity status interact differently with hPDL-MSCs. The data support P. gingivalis' capability to manipulate the inflammatory host response. Further research is necessary to obtain a comprehensive picture of the role of hPDL-MSCs in more complex oral biofilms.


Assuntos
Quimiocina CCL2 , Fusobacterium nucleatum , Interleucina-6 , Interleucina-8 , Ligamento Periodontal , Porphyromonas gingivalis , Tannerella forsythia , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Quimiocina CCL2/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/microbiologia , Células-Tronco Mesenquimais/metabolismo , Ensaio de Imunoadsorção Enzimática , Periodontite/microbiologia , Aderência Bacteriana , Microscopia Confocal , Células Cultivadas , Reação em Cadeia da Polimerase em Tempo Real , Adesão Celular , Coinfecção/microbiologia
2.
Mol Oral Microbiol ; 38(2): 115-133, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35964247

RESUMO

The recently identified bacterium Tannerella serpentiformis is the closest phylogenetic relative of Tannerella forsythia, whose presence in oral biofilms is associated with periodontitis. Conversely, T. serpentiformis is considered health-associated. This discrepancy was investigated in a comparative study of the two Tannerella species. The biofilm behavior was analyzed upon their addition and of Porphyromonas gingivalis-each bacterium separately or in combinations-to an in vitro five-species oral model biofilm. Biofilm composition and architecture was analyzed quantitatively using real-time PCR and qualitatively by fluorescence in situ hybridization/confocal laser scanning microscopy, and by scanning electron microscopy. The presence of T. serpentiformis led to a decrease of the total cell number of biofilm bacteria, while P. gingivalis was growth-promoting. This effect was mitigated by T. serpentiformis when added to the biofilm together with P. gingivalis. Notably, T. serpentiformis outcompeted T. forsythia numbers when the two species were simultaneously added to the biofilm compared to biofilms containing T. forsythia alone. Tannerella serpentiformis appeared evenly distributed throughout the multispecies biofilm, while T. forsythia was surface-located. Adhesion and invasion assays revealed that T. serpentiformis was significantly less effective in invading human gingival epithelial cells than T. forsythia. Furthermore, compared to T. forsythia, a higher immunostimulatory potential of human gingival fibroblasts and macrophages was revealed for T. serpentiformis, based on mRNA expression levels of the inflammatory mediators interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein-1 and tumor necrosis factor α, and production of the corresponding proteins. Collectively, these data support the potential of T. serpentiformis to interfere with biological processes relevant to the establishment of periodontitis.


Assuntos
Periodontite , Porphyromonas gingivalis , Tannerella forsythia , Humanos , Biofilmes , Hibridização in Situ Fluorescente , Periodontite/microbiologia , Filogenia , Porphyromonas gingivalis/genética , Tannerella forsythia/genética , Tannerella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA