Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(19): 8756-8769, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35508182

RESUMO

Here, we show how signal amplification by reversible exchange hyperpolarization of a range of 15N-containing synthons can be used to enable studies of their reactivity by 15N nuclear magnetic resonance (NO2- (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%), and NO3- (0.1%)). A range of iridium-based spin-polarization transfer catalysts are used, which for NO2- work optimally as an amino-derived carbene-containing complex with a DMAP-d2 coligand. We harness long 15N spin-order lifetimes to probe in situ reactivity out to 3 × T1. In the case of NO2- (T1 17.7 s at 9.4 T), we monitor PhNH2 diazotization in acidic solution. The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the formation of an identified cyclic pentazole intermediate. The role of PhN3 and NaN3 in copper-free click chemistry is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne. We also demonstrate simple routes to hyperpolarized N2 in addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation, and imine formation. Hyperpolarized ND3 is used to probe imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2-, we also demonstrate how the 15N-magnetic resonance imaging monitoring of biphasic catalysis confirms the successful preparation of an aqueous bolus of hyperpolarized 15NO2- in seconds with 8% polarization. Hence, we create a versatile tool to probe organic transformations that has significant relevance for the synthesis of future hyperpolarized pharmaceuticals.


Assuntos
Imageamento por Ressonância Magnética , Dióxido de Nitrogênio , Iminas , Espectroscopia de Ressonância Magnética/métodos , Nitrogênio
2.
Br J Cancer ; 127(2): 337-349, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462561

RESUMO

BACKGROUND: Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium (23Na) MRI in preclinical models of breast cancer. METHODS: Female Rag2-/- Il2rg-/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology. RESULTS: 23Na MRI revealed elevated sodium concentration ([Na+]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na+] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na+] ([Na+]i); extracellular [Na+] ([Na+]e) remained unchanged. Treatment with specific inward Na+ conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na+]. Nonetheless, effective treatment with docetaxel reduced tumour [Na+], whereas DWI measures were unchanged. CONCLUSIONS: Orthotopic breast cancer models exhibit elevated tumour [Na+] that is driven by aberrantly elevated [Na+]i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.


Assuntos
Neoplasias da Mama , Sódio , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos
3.
Magn Reson Med ; 88(1): 11-27, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253267

RESUMO

PURPOSE: Enabling drug tracking (distribution/specific pathways) with magnetic resonance spectroscopy requires manipulation (via hyperpolarization) of spin state populations and targets with sufficiently long magnetic lifetimes to give the largest possible window of observation. Here, we demonstrate how the proton resonances of a group of thienopyridazines (with known anticancer properties), can be amplified using the para-hydrogen (p-H2 ) based signal amplification by reversible exchange (SABRE) hyperpolarization technique. METHODS: Thienopyridazine isomers, including a 2 H version, were synthesized in house. Iridium-based catalysts dissolved in a methanol-d4 solvent facilitated polarization transfer from p-H2 gas to the target thienopyridazines. Subsequent SABRE 1 H responses of hyperpolarized thienopyridazines were completed (400 MHz NMR). Pseudo-singlet state approaches were deployed to extend magnetic state lifetimes. Proof of principle spectral-spatial images were acquired across a range of field strengths (7T-9.4T MRI). RESULTS: 1 H-NMR signal enhancements of -10,130-fold at 9.4T (~33% polarization) were achieved on thieno[2,3-d]pyridazine (T[2,3-d]P), using SABRE under optimal mixing/field transfer conditions. 1 H T1 lifetimes for the thienopyridazines were ~18-50 s. Long-lived state approaches extended the magnetic lifetime of target proton sites in T[2,3-d]P from an average of 25-40 seconds. Enhanced in vitro imaging (spatial and chemical shift based) of target T[2,3-d]P was demonstrated. CONCLUSION: Here, we demonstrate the power of SABRE to deliver a fast and cost-effective route to hyperpolarization of important chemical motifs of anticancer agents. The SABRE approach outlined here lays the foundations for realizing continuous flow, hyperpolarized tracking of drug delivery/pathways.


Assuntos
Antineoplásicos , Prótons , Hidrogênio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
4.
Neuroimage ; 237: 118195, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038769

RESUMO

Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.


Assuntos
Volume Sanguíneo Cerebral/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Córtex Somatossensorial/diagnóstico por imagem , Percepção do Tato/fisiologia , Adulto , Animais , Estimulação Elétrica , Feminino , Humanos , Masculino , Imagem Óptica , Estimulação Física , Ratos , Reprodutibilidade dos Testes
5.
Angew Chem Int Ed Engl ; 58(30): 10271-10275, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31115970

RESUMO

Hyperpolarisation methods that premagnetise agents such as pyruvate are currently receiving significant attention because they produce sensitivity gains that allow disease tracking and interrogation of cellular metabolism by magnetic resonance. Here, we communicate how signal amplification by reversible exchange (SABRE) can provide strong 13 C pyruvate signal enhancements in seconds through the formation of the novel polarisation transfer catalyst [Ir(H)2 (η2 -pyruvate)(DMSO)(IMes)]. By harnessing SABRE, strong signals for [1-13 C]- and [2-13 C]pyruvate in addition to a long-lived singlet state in the [1,2-13 C2 ] form are readily created; the latter can be observed five minutes after the initial hyperpolarisation step. We also demonstrate how this development may help with future studies of chemical reactivity.

6.
Neuroimage ; 171: 165-175, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294386

RESUMO

Whether functional hyperemia during epileptic activity is adequate to meet the heightened metabolic demand of such events is controversial. Whereas some studies have demonstrated hyperoxia during ictal onsets, other work has reported transient hypoxic episodes that are spatially dependent on local surface microvasculature. Crucially, how laminar differences in ictal evolution can affect subsequent cerebrovascular responses has not been thus far investigated, and is likely significant in view of possible laminar-dependent neurovascular mechanisms and angioarchitecture. We addressed this open question using a novel multi-modal methodology enabling concurrent measurement of cortical tissue oxygenation, blood flow and hemoglobin concentration, alongside laminar recordings of neural activity, in a urethane anesthetized rat model of recurrent seizures induced by 4-aminopyridine. We reveal there to be a close relationship between seizure epicenter depth, translaminar local field potential (LFP) synchrony and tissue oxygenation during the early stages of recurrent seizures, whereby deep layer seizures are associated with decreased cross laminar synchrony and prolonged periods of hypoxia, and middle layer seizures are accompanied by increased cross-laminar synchrony and hyperoxia. Through comparison with functional activation by somatosensory stimulation and graded hypercapnia, we show that these seizure-related cerebrovascular responses occur in the presence of conserved neural-hemodynamic and blood flow-volume coupling. Our data provide new insights into the laminar dependency of seizure-related neurovascular responses, which may reconcile inconsistent observations of seizure-related hypoxia in the literature, and highlight a potential layer-dependent vulnerability that may contribute to the harmful effects of clinical recurrent seizures. The relevance of our findings to perfusion-related functional neuroimaging techniques in epilepsy are also discussed.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Hiperóxia/fisiopatologia , Convulsões/fisiopatologia , Animais , Circulação Cerebrovascular/fisiologia , Feminino , Hemodinâmica/fisiologia , Ratos
7.
Neuroimage ; 146: 575-588, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27646129

RESUMO

It is generally recognised that event related potentials (ERPs) of electroencephalogram (EEG) primarily reflect summed post-synaptic activity of the local pyramidal neural population(s). However, it is still not understood how the positive and negative deflections (e.g. P1, N1 etc) observed in ERP recordings are related to the underlying excitatory and inhibitory post-synaptic activity. We investigated the neurogenesis of P1 and N1 in ERPs by pharmacologically manipulating inhibitory post-synaptic activity in the somatosensory cortex of rodent, and concurrently recording EEG and local field potentials (LFPs). We found that the P1 wave in the ERP and LFP of the supragranular layers is determined solely by the excitatory post-synaptic activity of the local pyramidal neural population, as is the initial segment of the N1 wave across cortical depth. The later part of the N1 wave was modulated by inhibitory post-synaptic activity, with its peak and the pulse width increasing as inhibition was reduced. These findings suggest that the temporal delay of inhibition with respect to excitation observed in intracellular recordings is also reflected in extracellular field potentials (FPs), resulting in a temporal window during which only excitatory post-synaptic activity and leak channel activity are recorded in the ERP and evoked LFP time series. Based on these findings, we provide clarification on the interpretation of P1 and N1 in terms of the excitatory and inhibitory post-synaptic activities of the local pyramidal neural population(s).


Assuntos
Ondas Encefálicas , Potenciais Somatossensoriais Evocados , Córtex Somatossensorial/fisiologia , Animais , Eletroencefalografia , Feminino , Inibição Neural , Estimulação Física , Ratos , Percepção do Tato/fisiologia
8.
Neuroimage ; 107: 23-33, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25479018

RESUMO

Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans.


Assuntos
Volume Sanguíneo/fisiologia , Encéfalo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Adulto , Algoritmos , Animais , Vasos Sanguíneos/anatomia & histologia , Córtex Cerebral/irrigação sanguínea , Vias Eferentes/anatomia & histologia , Vias Eferentes/fisiologia , Feminino , Compostos Férricos , Dedos/inervação , Dedos/fisiologia , Haplorrinos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Movimento/fisiologia , Oxigênio/sangue , Ratos , Razão Sinal-Ruído , Adulto Jovem
9.
Neuroimage ; 97: 349-62, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24742920

RESUMO

Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in 'arterial' and 'venous' blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between 'arterial' and 'venous' contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.


Assuntos
Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Oxigênio/sangue , Adulto , Animais , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/ultraestrutura , Capilares/anatomia & histologia , Capilares/ultraestrutura , Circulação Cerebrovascular/fisiologia , Movimentos Oculares/fisiologia , Feminino , Haplorrinos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Neurônios/ultraestrutura , Córtex Visual/anatomia & histologia , Adulto Jovem
10.
Eur Radiol Exp ; 8(1): 75, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853182

RESUMO

BACKGROUND: To study the reproducibility of 23Na magnetic resonance imaging (MRI) measurements from breast tissue in healthy volunteers. METHODS: Using a dual-tuned bilateral 23Na/1H breast coil at 3-T MRI, high-resolution 23Na MRI three-dimensional cones sequences were used to quantify total sodium concentration (TSC) and fluid-attenuated sodium concentration (FASC). B1-corrected TSC and FASC maps were created. Two readers manually measured mean, minimum and maximum TSC and mean FASC values using two sampling methods: large regions of interest (LROIs) and small regions of interest (SROIs) encompassing fibroglandular tissue (FGT) and the highest signal area at the level of the nipple, respectively. The reproducibility of the measurements and correlations between density, age and FGT apparent diffusion coefficient (ADC) values were evaluatedss. RESULTS: Nine healthy volunteers were included. The inter-reader reproducibility of TSC and FASC using SROIs and LROIs was excellent (intraclass coefficient range 0.945-0.979, p < 0.001), except for the minimum TSC LROI measurements (p = 0.369). The mean/minimum LROI TSC and mean LROI FASC values were lower than the respective SROI values (p < 0.001); the maximum LROI TSC values were higher than the SROI TSC values (p = 0.009). TSC correlated inversely with age but not with FGT ADCs. The mean and maximum FGT TSC and FASC values were higher in dense breasts in comparison to non-dense breasts (p < 0.020). CONCLUSIONS: The chosen sampling method and the selected descriptive value affect the measured TSC and FASC values, although the inter-reader reproducibility of the measurements is in general excellent. RELEVANCE STATEMENT: 23Na MRI at 3 T allows the quantification of TSC and FASC sodium concentrations. The sodium measurements should be obtained consistently in a uniform manner. KEY POINTS: • 23Na MRI allows the quantification of total and fluid-attenuated sodium concentrations (TSC/FASC). • Sampling method (large/small region of interest) affects the TSC and FASC values. • Dense breasts have higher TSC and FASC values than non-dense breasts. • The inter-reader reproducibility of TSC and FASC measurements was, in general, excellent. • The results suggest the importance of stratifying the sodium measurements protocol.


Assuntos
Mama , Imageamento por Ressonância Magnética , Sódio , Humanos , Feminino , Reprodutibilidade dos Testes , Adulto , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Isótopos de Sódio , Voluntários Saudáveis , Variações Dependentes do Observador , Adulto Jovem
11.
J Magn Reson Imaging ; 38(3): 739-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23677870

RESUMO

PURPOSE: To establish procedures for functional MRI (fMRI) in rats without the need for anesthetic agents. MATERIALS AND METHODS: Rats were trained to habituate to restraint in a harness and scanner noise. Under anesthesia, rats were then prepared with a cranial implant that permitted stabilization of the head during subsequent imaging experiments. The cranial implant included an radiofrequency (RF) coil that was used to transmit and receive radiofrequency signals during imaging. Further training was then conducted to habituate the animals to head fixation whilst in the MR scanner. RESULTS: Using this method, we were able to successfully and repeatedly record BOLD fMRI responses to hypercapnia and whisker stimulation in awake rats. Electrical stimulation of the whisker pad produced a ∼7% increase in BOLD signal in the corresponding barrel cortex as well as adjacent negative BOLD responses, whilst hypercapnia produced larger increases in BOLD signal amplitude. CONCLUSION: This methodology leaves the face and limbs free from obstruction, making possible a range of behavioral or sensory stimulation protocols. Further development of this animal model could enable traditional behavioral neuroscience techniques to be combined with modern functional neuroimaging.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/veterinária , Próteses e Implantes , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Vibrissas/fisiologia , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vibrissas/inervação
12.
Aging Cell ; 22(11): e14005, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803929

RESUMO

Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.


Assuntos
Trifosfato de Adenosina , Encéfalo , Animais , Humanos , Idoso , Espectroscopia de Ressonância Magnética
13.
Nanotheranostics ; 7(1): 102-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593801

RESUMO

Delivering therapies to deeply seated brain tumours (BT) is a major clinical challenge. Magnetic drug targeting (MDT) could overcome this by rapidly transporting magnetised drugs directly into BT. We have developed a magnetic device for application in murine BT models using an array of neodymium magnets with a combined strength of 0.7T. In a closed fluidic system, the magnetic device trapped magnetic nanoparticles (MNP) up to distances of 0.8cm. In mice, the magnetic device guided intravenously administered MNP (<50nm) from the circulation into the brain where they localised within mouse BT. Furthermore, MDT of magnetised Temozolomide (TMZmag+) significantly reduced tumour growth and extended mouse survival to 48 days compared to the other treatment groups. Using the same principles, we built a proof of principle scalable magnetic device for human use with a strength of 1.1T. This magnetic device demonstrated trapping of MNP undergoing flow at distances up to 5cm. MDT using our magnetic device provides an opportunity for targeted delivery of magnetised drugs to human BT.


Assuntos
Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Magnetismo , Temozolomida , Fenômenos Magnéticos
14.
Neuroimage ; 61(1): 10-20, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22440642

RESUMO

Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Oxigênio/sangue , Análise Espectral/métodos , Animais , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Interpretação Estatística de Dados , Campos Eletromagnéticos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Hemodinâmica/fisiologia , Hemoglobinas/análise , Hemoglobinas/metabolismo , Histologia , Processamento de Imagem Assistida por Computador , Modelos Neurológicos , Ratos , Respiração Artificial , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/fisiologia
15.
Neuroimage ; 59(3): 1997-2006, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21982928

RESUMO

Despite recent advances in alternative brain imaging technologies, functional magnetic resonance imaging (fMRI) remains the workhorse for both medical diagnosis and primary research. Indeed, the number of research articles that utilise fMRI have continued to rise unabated since its conception in 1991, despite the limitation that recorded signals originate from the cerebral vasculature rather than neural tissue. Consequently, understanding the relationship between brain activity and the resultant changes in metabolism and blood flow (neurovascular coupling) remains a vital area of research. In the past, technical constraints have restricted investigations of neurovascular coupling to cortical sites and have led to the assumption that coupling in non-cortical structures is the same as in the cortex, despite the lack of any evidence. The current study investigated neurovascular coupling in the rat using whole-brain blood oxygenation level-dependent (BOLD) fMRI and multi-channel electrophysiological recordings and measured the response to a sensory stimulus as it proceeded through brainstem, thalamic and cortical processing sites - the so-called whisker-to-barrel pathway. We found marked regional differences in the amplitude of BOLD activation in the pathway and non-linear neurovascular coupling relationships in non-cortical sites. The findings have important implications for studies that use functional brain imaging to investigate sub-cortical function and caution against the use of simple, linear mapping of imaging signals onto neural activity.


Assuntos
Encéfalo/anatomia & histologia , Circulação Cerebrovascular/fisiologia , Vias Neurais/anatomia & histologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Imagem Ecoplanar , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Dinâmica não Linear , Oxigênio/sangue , Estimulação Física , Ratos , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia , Fixação de Tecidos , Vibrissas/inervação , Vibrissas/fisiologia
16.
Br J Oral Maxillofac Surg ; 60(5): 596-603, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35317935

RESUMO

We report a summary of developmental work to explore, develop, and establish clinical applications of real-time magnetic resonance imaging (rtMRI) with a temporal resolution of 70 frames/second in oral and maxillofacial surgery (OMFS). Real-time MRI can contribute to procedure planning, diagnostics, rehabilitation, monitoring, and patient education. At present, conventional MRI is used extensively in the diagnosis, staging, and follow up of head and neck cancer patients, with scanning durations typically of several minutes and temporal resolution of up to 0.5 frames/second. The potential for rtMRI, where function can be assessed, could go far beyond the established clinical application of conventional MRI. Preliminary prototyping is a first stage in the establishment of rtMRI in OMFS. We follow best-practice approaches in co-creation across multiple disciplines, an indispensable aspect in the development of new methodologies and diagnostic tools.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
17.
J Neurosci ; 30(12): 4285-94, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20335464

RESUMO

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.


Assuntos
Circulação Cerebrovascular/fisiologia , Inibição Neural/fisiologia , Córtex Somatossensorial/irrigação sanguínea , Vibrissas/inervação , Animais , Mapeamento Encefálico , Estimulação Elétrica/métodos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Hemoglobinas/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Oxigênio/sangue , Ratos , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Análise Espectral
18.
ACS Chem Neurosci ; 12(10): 1768-1776, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33950665

RESUMO

Neuromuscular diseases result in muscle weakness, disability, and, in many instances, death. Preclinical models form the bedrock of research into these disorders, and the development of in vivo and potentially translational biomarkers for the accurate identification of disease is crucial. Spontaneous Raman spectroscopy can provide a rapid, label-free, and highly specific molecular fingerprint of tissue, making it an attractive potential biomarker. In this study, we have developed and tested an in vivo intramuscular fiber optic Raman technique in two mouse models of devastating human neuromuscular diseases, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy (SOD1G93A and mdx, respectively). The method identified diseased and healthy muscle with high classification accuracies (area under the receiver operating characteristic curves (AUROC): 0.76-0.92). In addition, changes in diseased muscle over time were also identified (AUROCs 0.89-0.97). Key spectral changes related to proteins and the loss of α-helix protein structure. Importantly, in vivo recording did not cause functional motor impairment and only a limited, resolving tissue injury was seen on high-resolution magnetic resonance imaging. Lastly, we demonstrate that ex vivo muscle from human patients with these conditions produced similar spectra to those observed in mice. We conclude that spontaneous Raman spectroscopy of muscle shows promise as a translational research tool.


Assuntos
Esclerose Lateral Amiotrófica , Distrofia Muscular de Duchenne , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Músculos , Análise Espectral Raman
19.
Neuroimage ; 47(4): 1608-19, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19505581

RESUMO

We describe the use of the three dimensional characteristics of the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) MRI signal changes to refine a two dimensional optical imaging spectroscopy (OIS) algorithm. The cortical depth profiles of the BOLD and CBV changes following neural activation were used to parameterise a 5-layer heterogeneous tissue model used in the Monte Carlo simulations (MCS) of light transport through tissue in the OIS analysis algorithm. To transform the fMRI BOLD and CBV measurements into deoxy-haemoglobin (Hbr) profiles we inverted an MCS of extra-vascular MR signal attenuation under the assumption that the extra-/intravascular ratio is 2:1 at a magnetic field strength of 3 T. The significant improvement in the quantitative accuracy of haemodynamic measurements using the new heterogeneous tissue model over the original homogeneous tissue model OIS algorithm was demonstrated on new concurrent OIS and fMRI data covering a range of stimulus durations.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Análise Espectral/métodos , Animais , Encéfalo/irrigação sanguínea , Feminino , Oxigênio/sangue , Ratos
20.
J Neurosci Methods ; 300: 147-156, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28414047

RESUMO

BACKGROUND: Generating quantitative metrics of rodent locomotion and general behaviours from video footage is important in behavioural neuroscience studies. However, there is not yet a free software system that can process large amounts of video data with minimal user interventions. NEW METHOD: Here we propose a new, automated rodent tracker (ART) that uses a simple rule-based system to quickly and robustly track rodent nose and body points, with minimal user input. Tracked points can then be used to identify behaviours, approximate body size and provide locomotion metrics, such as speed and distance. RESULTS: ART was demonstrated here on video recordings of a SOD1 mouse model, of amyotrophic lateral sclerosis, aged 30, 60, 90 and 120days. Results showed a robust decline in locomotion speeds, as well as a reduction in object exploration and forward movement, with an increase in the time spent still. Body size approximations (centroid width), showed a significant decrease from P30. COMPARISON WITH EXISTING METHOD(S): ART performed to a very similar accuracy as manual tracking and Ethovision (a commercially available alternative), with average differences in coordinate points of 0.6 and 0.8mm, respectively. However, it required much less user intervention than Ethovision (6 as opposed to 30 mouse clicks) and worked robustly over more videos. CONCLUSIONS: ART provides an open-source option for behavioural analysis of rodents, performing to the same standards as commercially available software. It can be considered a validated, and accessible, alternative for researchers for whom non-invasive quantification of natural rodent behaviour is desirable.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Comportamento Animal/fisiologia , Interpretação de Imagem Assistida por Computador/normas , Processamento de Imagem Assistida por Computador/normas , Locomoção/fisiologia , Software/normas , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase-1/genética , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA