Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 491: 117074, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168189

RESUMO

Despite its efficacy in human epidermal growth factor receptor 2 positive cancer treatment, trastuzumab-induced cardiotoxicity (TIC) has become a growing concern. Due to the lack of cardiomyocyte regeneration and proliferation in adult heart, cell death significantly contributes to cardiovascular diseases. Cardiac autonomic modulation by vagus nerve stimulation (VNS) has shown cardioprotective effects in several heart disease models, while the effects of VNS and its underlying mechanisms against TIC have not been found. Forty adult male Wistar rats were divided into 5 groups: (i) control without VNS (CSham) group, (ii) trastuzumab (4 mg/kg/day, i.p.) without VNS (TSham) group, (iii) trastuzumab + VNS (TVNS) group, (iv) trastuzumab + VNS + mAChR blocker (atropine; 1 mg/kg/day, ip, TVNS + Atro) group, and (v) trastuzumab + VNS + nAChR blocker (mecamylamine; 7.5 mg/kg/day, ip, TVNS + Mec) group. Our results showed that trastuzumab induced cardiac dysfunction by increasing autonomic dysfunction, mitochondrial dysfunction/dynamics imbalance, and cardiomyocyte death including apoptosis, autophagic deficiency, pyroptosis, and ferroptosis, which were notably alleviated by VNS. However, mAChR and nAChR blockers significantly inhibited the beneficial effects of VNS on cardiac autonomic dysfunction, mitochondrial dysfunction, cardiomyocyte apoptosis, pyroptosis, and ferroptosis. Only nAChR could counteract the protective effects of VNS on cardiac mitochondrial dynamics imbalance and autophagy insufficiency. Therefore, VNS prevented TIC by rebalancing autonomic activity, ameliorating mitochondrial dysfunction and cardiomyocyte death through mAChR and nAChR activation. The current study provides a novel perspective elucidating the potential treatment of VNS, thus also offering other pharmacological therapeutic promises in TIC patients.


Assuntos
Apoptose , Cardiotoxicidade , Miócitos Cardíacos , Ratos Wistar , Receptores Muscarínicos , Receptores Nicotínicos , Trastuzumab , Estimulação do Nervo Vago , Animais , Estimulação do Nervo Vago/métodos , Masculino , Ratos , Trastuzumab/toxicidade , Trastuzumab/farmacologia , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/toxicidade , Nervo Vago/efeitos dos fármacos
2.
Cardiovasc Drugs Ther ; 37(1): 89-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34515894

RESUMO

PURPOSE: There is an increasing body of evidence to show that impairment in mitochondrial dynamics including excessive fission and insufficient fusion has been observed in the pre-diabetic condition. In pre-diabetic rats with cardiac ischemia-reperfusion (I/R) injury, acute treatment with a mitochondria fission inhibitor (Mdivi-1) and a fusion promoter (M1) showed cardioprotection. However, the potential preventive effects of chronic Mdivi-1 and M1 treatment in a pre-diabetic model of cardiac I/R have never been elucidated. METHODS: Male Wistar rats (n = 40) were fed with a high-fat diet (HFD) for 12 weeks to induce prediabetes. Then, all pre-diabetic rats received the following treatments daily via intraperitoneal injection for 2 weeks: (1) HFDV (Vehicle, 0.1% DMSO); (2) HFMdivi1 (Mdivi-1 1.2 mg/kg); (3) HFM1 (M1 2 mg/kg); and (4) HFCom (Mdivi-1 + M1). At the end of treatment protocols, all rats underwent 30 min of coronary artery ligation followed by reperfusion for 120 min. RESULTS: Chronic Mdivi-1, M1, and the combined treatment showed markedly improved cardiac mitochondrial function and dynamic control, leading to a decrease in cardiac arrhythmias, myocardial cell death, and infarct size (49%, 42%, and 51% reduction for HFMdivi1, HFM1, and HFCom, respectively vs HFDV). All of these treatments improved cardiac function following cardiac I/R injury in pre-diabetic rats. CONCLUSION: Chronic inhibition of mitochondrial fission and promotion of fusion exerted cardioprevention in prediabetes with cardiac I/R injury through the relief of cardiac mitochondrial dysfunction and dynamic alterations, and reduction in myocardial infarction, thus improving cardiac function.


Assuntos
Diabetes Mellitus Experimental , Traumatismo por Reperfusão Miocárdica , Estado Pré-Diabético , Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos Wistar , Dinâmica Mitocondrial , Estado Pré-Diabético/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Miócitos Cardíacos , Mitocôndrias/metabolismo , Apoptose
3.
Cell Mol Life Sci ; 80(1): 21, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583785

RESUMO

The aberration of programmed cell death including cell death associated with autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis can be observed in the development and progression of doxorubicin-induced cardiotoxicity (DIC). Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against cardiomyocyte death through the release of the neurotransmitter acetylcholine (ACh) under a variety of pathological conditions. However, the roles of VNS and its underlying mechanisms against DIC have never been investigated. Forty adults male Wistar rats were divided into 5 experimental groups: (i) control without VNS (CSham) group, (ii) doxorubicin (3 mg/kg/day, i.p.) without VNS (DSham) group, (iii) doxorubicin + VNS (DVNS) group, (iv) doxorubicin + VNS + mAChR antagonist (atropine; 1 mg/kg/day, ip, DVNS + Atro) group, and (v) doxorubicin + VNS + nAChR antagonist (mecamylamine; 7.5 mg/kg/day, ip, DVNS + Mec) group. Our results showed that doxorubicin insult led to left ventricular (LV) dysfunction through impaired cardiac autonomic balance, decreased mitochondrial function, imbalanced mitochondrial dynamics, and exacerbated cardiomyocyte death including autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. However, VNS treatment improved cardiac mitochondrial and autonomic functions, and suppressed excessive autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, leading to improved LV function. Consistent with this, ACh effectively improved cell viability and suppressed cell cytotoxicity in doxorubicin-treated H9c2 cells. In contrast, either inhibitors of muscarinic (mAChR) or nicotinic acetylcholine receptor (nAChR) completely abrogated the favorable effects mediated by VNS and acetylcholine. These findings suggest that VNS exerts cardioprotective effects against doxorubicin-induced cardiomyocyte death via activation of both mAChR and nAChR.


Assuntos
Infarto do Miocárdio , Estimulação do Nervo Vago , Ratos , Animais , Masculino , Infarto do Miocárdio/patologia , Estimulação do Nervo Vago/métodos , Acetilcolina , Cardiotoxicidade/terapia , Ratos Wistar , Apoptose/fisiologia , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Nervo Vago/metabolismo , Nervo Vago/patologia
4.
J Wound Care ; 32(10): 676-684, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830829

RESUMO

OBJECTIVE: This study aimed to investigate the involvement of mitochondrial biogenesis, and determine the extent of fibroblast proliferation and cellular apoptosis, in the gingiva of patients who had undergone head and neck radiation, after receiving hyperbaric oxygen therapy (HBOT), in comparison with normal gingiva. METHOD: A total of 16 patients who had undergone head and neck radiation with HBOT and six healthy subjects were included in the study. After the completion of radiation therapy, patients received HBOT at 2 ATA for 90 minutes per session, and for 20 sessions per patient. Samples of gingival tissues were then taken. The levels of: transforming growth factor beta (TGF-ß); phospho-nuclear factor kappa-light-chain-enhancer of activated B cells (p-NFÏ°B); nuclear factor kappa-light-chain-enhancer of activated B cells (NFÏ°B); proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); phospho-dynamin-related protein 1 at ser616 (p-Drp1ser616); dynamin-related protein 1 (Drp1); Bcl-2-associated X-protein (Bax); and B-cell lymphoma 2 (Bcl-2) were determined using a Western blot. Independent t-test and Chi-squared tests were used in the study. RESULTS: There were no differences in the levels of TGF-ß, p-NFÏ°B, NFÏ°B, p-Drp1ser616, Drp1, Bax and Bcl-2 between the two groups. However, the level of PGC-1α was greater in irradiated gingival tissues with HBOT than in the healthy gingiva. CONCLUSION: Radiation-induced impaired wound healing can be improved by HBOT as indicated by levels of apoptosis, mitochondrial dynamics, cell proliferation and inflammation in irradiated gingiva with HBOT to a similar level to normal healthy gingiva. These findings may occur through an increase in mitochondrial biogenesis following HBOT.


Assuntos
Oxigenoterapia Hiperbárica , Humanos , Gengiva , Proteína X Associada a bcl-2 , Cicatrização , Fator de Crescimento Transformador beta , Dinaminas
5.
Acta Pharmacol Sin ; 43(1): 26-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33712720

RESUMO

Mitochondria are extraordinarily dynamic organelles that have a variety of morphologies, the status of which are controlled by the opposing processes of fission and fusion. Our recent study shows that inhibition of excessive mitochondrial fission by Drp1 inhibitor (Mdivi-1) leads to a reduction in infarct size and left ventricular (LV) dysfunction following cardiac ischemia-reperfusion (I/R) injury in high fat-fed induced pre-diabetic rats. In the present study, we investigated the cardioprotective effects of a mitochondrial fusion promoter (M1) and a combined treatment (M1 and Mdivi-1) in pre-diabetic rats. Wistar rats were given a high-fat diet for 12 weeks to induce prediabetes. The rats then subjected to 30 min-coronary occlusions followed by reperfusion for 120 min. These rats were intravenously administered M1 (2 mg/kg) or M1 (2 mg/kg) combined with Mdivi-1 (1.2 mg/kg) prior to ischemia, during ischemia or at the onset of reperfusion. We showed that administration of M1 alone or in combination with Mdivi-1 prior to ischemia, during ischemia or at the onset of reperfusion all significantly attenuated cardiac mitochondrial ROS production, membrane depolarization, swelling and dynamic imbalance, leading to reduced arrhythmias and infarct size, resulting in improved LV function in pre-diabetic rats. In conclusion, the promotion of mitochondrial fusion at any time-points during cardiac I/R injury attenuated cardiac mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and improved LV function in pre-diabetic rats.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estado Pré-Diabético/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Estado Pré-Diabético/induzido quimicamente , Quinazolinonas/farmacologia , Ratos , Ratos Wistar , Relação Estrutura-Atividade
6.
Eur J Nutr ; 60(4): 2047-2061, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33011844

RESUMO

PURPOSE: Obesity-induced insulin resistant is associated with cardiovascular diseases via impairing cardiac mitochondria. Recently, D-allulose could protect ß-islets and improve insulin resistance. However, the effects of D-allulose on the heart and cardiac mitochondrial function under obesity-induced insulin-resistant condition has not been investigated. In this study, we aimed to investigate the effects of D-allulose on metabolic parameters, cardiac function, heart rate variability (HRV), cardiac mitochondrial function, and apoptosis in the heart of obesity-induced insulin-resistant rats induced by chronic high fat diet consumption. METHODS: Male Wistar rats (n = 24) received a normal fat diet (ND) or high fat diet (HFD) for 12 weeks. Then, HFD group was randomly divided into three subgroups to receive (1) HFD with distilled water, (2) HFD with 3% D-allulose 1.9 g/ kg·BW/ day (HFR), and (3) HFD with metformin 300 mg/kg·BW/ day (HFM) by diluted in drinking water daily for 12 weeks. At week 24, proposed study parameters were investigated. RESULTS: Chronic HFD consumption induced obesity-induced insulin resistant in rats and high fat diet impaired cardiac function and HRV. HFR rats had improved insulin sensitivity as indicated by decreasing HOMA index, plasma insulin, whereas HFM decreased body weight, visceral fat, plasma cholesterol, and plasma LDL. HFR and HFM provided similar efficacy in improving HRV and attenuating cardiac mitochondrial dysfunction, leading to improved cardiac function. CONCLUSIONS: Even though this is the first investigation of the D-allulose impact on the heart with a relatively small sample size, it clearly demonstrated a beneficial effect on the heart. D-allulose exerted a therapeutic effect on metabolic parameters except for body weight and lipid profiles and provided cardioprotective effects similar to metformin via attenuating cardiac mitochondrial function in obesity-induced insulin-resistant rats.


Assuntos
Resistência à Insulina , Insulina , Animais , Dieta Hiperlipídica/efeitos adversos , Frutose , Masculino , Mitocôndrias Cardíacas , Obesidade , Ratos , Ratos Wistar
7.
J Cell Mol Med ; 24(16): 9189-9203, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32628813

RESUMO

Post-menopausal women have a higher risk of developing cardiometabolic dysfunction. Atorvastatin attenuates dyslipidaemia and cardiac dysfunction but it can have undesirable effects including increased risk of diabetes and myalgia. Currently, the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor efficiently reduces low-density lipoprotein cholesterol (LDL-C) levels more effectively than atorvastatin. We have been suggested that PCSK9 inhibitor attenuated cardiometabolic impairment more effectively than atorvastatin in ovariectomized prediabetic rats. Female Wistar rats (n = 48) were fed a normal diet (ND) or high-fat diet (HFD) for 12 weeks. Then, HFD rats were assigned to a sham-operated (Sham) or ovariectomized (OVX) group. Six weeks after surgery, the OVX group was subdivided into 4 treatment groups: vehicle (HFOV), atorvastatin (HFOA) (40 mg/kg/day; s.c.), PCSK9 inhibitor (HFOP) (4 mg/kg/day; s.c.) and oestrogen (HFOE2 ) (50 µg/kg/day; s.c.) for an additional 3 weeks. Metabolic parameters, cardiac and mitochondrial function, and [Ca2+ ]i transients were evaluated. All HFD rats became obese-insulin resistant. HFS rats had significantly impaired left ventricular (LV) function, cardiac mitochondrial function and [Ca2+ ]i transient dysregulation. Oestrogen deprivation (HFOV) aggravated all of these impairments. Our findings indicated that the atorvastatin, PCSK9 inhibitor and oestrogen shared similar efficacy in the attenuation in cardiometabolic impairment in ovariectomized prediabetic rats.


Assuntos
Atorvastatina/farmacologia , Cálcio/metabolismo , Doenças Cardiovasculares/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Obesidade/complicações , Inibidores de PCSK9 , Estado Pré-Diabético/complicações , Animais , Anticolesterolemiantes/farmacologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Dieta Hiperlipídica , Feminino , Resistência à Insulina , Mitocôndrias Cardíacas/metabolismo , Ovariectomia , Ratos , Ratos Wistar
8.
Cardiovasc Diabetol ; 19(1): 91, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539724

RESUMO

BACKGROUND: A sodium-glucose co-transporter 2 (SGLT-2) inhibitor had favorable impact on the attenuation of hyperglycemia together with the severity of heart failure. However, the effects of acute dapagliflozin administration at the time of cardiac ischemia/reperfusion (I/R) injury are not established. METHODS: The effects of dapagliflozin on cardiac function were investigated by treating cardiac I/R injury at different time points. Cardiac I/R was instigated in forty-eight Wistar rats. These rats were then split into 4 interventional groups: control, dapagliflozin (SGLT2 inhibitor, 1 mg/kg) given pre-ischemia, at the time of ischemia and at the beginning of reperfusion. Left ventricular (LV) function and arrhythmia score were evaluated. The hearts were used to evaluate size of myocardial infarction, cardiomyocyte apoptosis, cardiac mitochondrial dynamics and function. RESULTS: Dapagliflozin given pre-ischemia conferred the maximum level of cardioprotection quantified through the decrease in arrhythmia, attenuated infarct size, decreased cardiac apoptosis and improved cardiac mitochondrial function, biogenesis and dynamics, leading to LV function improvement during cardiac I/R injury. Dapagliflozin given during ischemia also showed cardioprotection, but at a lower level of efficacy. CONCLUSIONS: Acute dapagliflozin administration during cardiac I/R injury exerted cardioprotective effects by attenuating cardiac infarct size, increasing LV function and reducing arrhythmias. These benefits indicate its potential clinical usefulness.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
9.
Arch Biochem Biophys ; 689: 108470, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32592802

RESUMO

The accumulation of lipid as a result of long-term consumption of a high-fat diet (HFD) may lead to metabolic and brain dysfunction. Atorvastatin, a recommended first-line lipid-lowering agent, has shown beneficial effects on metabolic and brain functions in several models. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor was approved as an effective therapeutic drug for dyslipidemia patients. However, few studies have reported on the effect of this PCSK9 inhibitor on brain function. In addition, the comparative efficacy on the improvement of metabolic and brain functions between PCSK9 inhibitor and atorvastatin in obese models have not been elucidated. We hypothesized that PCSK9 inhibitor improves metabolic and brain functions in an obese model to a greater extent than atorvastatin. Thirty-two female rats were fed with either a normal diet (ND) or HFD for 15 weeks. At week 13, ND rats were given normal saline and HFD rats were given either normal saline, atorvastatin (40 mg/kg/day) or PCSK9 inhibitor (4 mg/kg/day) for 3 weeks. Oxidative stress, blood brain barrier breakdown, microglial hyperactivity, synaptic dysplasticity, apoptosis, amyloid proteins production in the hippocampus and cognitive decline were found in HFD-fed rats. Atorvastatin and PCSK9 inhibitor therapies equally attenuated hippocampal apoptosis and amyloid protein production in HFD-fed rats. Interestingly, PCSK9 inhibitor had the greater efficacy than atorvastatin on the amelioration of hippocampal oxidative stress, blood brain barrier breakdown, microglial hyperactivity, synaptic dysplasticity in the hippocampus and cognitive decline. These findings suggest that PCSK9 inhibitor may be another drug of choice for improving brain function in the obese condition with discontinued statin therapy.


Assuntos
Anticolesterolemiantes/uso terapêutico , Atorvastatina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Obesidade/tratamento farmacológico , Inibidores de PCSK9 , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Pró-Proteína Convertase 9/metabolismo , Ratos
10.
J Cell Mol Med ; 23(11): 7310-7319, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31557388

RESUMO

During acute cardiac ischaemia/reperfusion (I/R), an increased plasma proprotein convertase subtilisin/kexin 9 (PCSK9) level instigates inflammatory and oxidative processes within ventricular myocytes, resulting in cardiac dysfunction. Therefore, PCSK9 inhibitor (PCSK9i) might exert cardioprotection against I/R injury. However, the effects of PCSK9i on the heart during I/R injury have not been investigated. The effects of PCSK9i given at different time-points during I/R injury on left ventricular (LV) function were investigated. Male Wistar rats were subjected to cardiac I/R injury and divided into 3 treatment groups (n = 10/group): pre-ischaemia, during ischaemia and upon onset of reperfusion. The treatment groups received PCSK9i (Pep2-8, 10 µg/kg) intravenously. A control group (n = 10) received saline solution. During the I/R protocol, arrhythmia scores and LV function were determined. Then, the infarct size, mitochondrial function, mitochondrial dynamics and level of apoptosis were determined. PCSK9i given prior to ischaemia exerted cardioprotection through protection of cardiac mitochondrial function, decreased infarct size and improved LV function, compared with control. PCSK9i administered during ischaemia and upon the onset of reperfusion did not provide any of those benefits. PCSK9i administered before ischaemia exerts cardioprotection, as demonstrated by the attenuation of infarct size and cardiac arrhythmia during cardiac I/R injury. The attenuation is associated with improved mitochondrial function and connexin43 phosphorylation, leading to improved LV function.


Assuntos
Arritmias Cardíacas/prevenção & controle , Cardiotônicos/farmacologia , Lipídeos/análise , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Inibidores de PCSK9 , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Wistar
11.
J Cell Physiol ; 234(5): 6983-6991, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417357

RESUMO

The incidence of cardiovascular disease and metabolic syndrome increases after the onset of menopause, giving evidence for the vital role of estrogen. Intracellular calcium [Ca2+ ]i regulation plays an important role in the maintenance of left ventricular (LV) contractile function. Although either estrogen deprivation or obesity has been shown to strongly affect the metabolic status and LV function, the effects of estrogen deprivation on the cardiometabolic status and cardiac [Ca 2+ ]i regulation in the obese-insulin resistant condition have never been investigated. Our hypothesis was that estrogen deprivation aggravates LV dysfunction through the increased impairment of [Ca 2+ ]i homeostasis in obese-insulin resistant rats. Female rats were fed on either a high-fat (HFD, 59.28% fat) or normal (ND, 19.77% fat) diet for 13 weeks. Then, rats were divided into sham (HFS and NDS) operated or ovariectomized (HFO and NDO) groups. Six weeks after surgery, metabolic status, LV function and incidence of [Ca 2+ ]i transients were determined. NDO, HFS, and HFO rats had evidence of obese-insulin resistance indicated by increased body weight with hyperinsulinemia and euglycemia. Although NDO, HFS, and HFO rats had markedly reduced %LV fractional shortening, E/A ratio and decreased [Ca 2+ ]i transient amplitude and decay rate, HFO rats had the most severe impairments. These findings indicate that estrogen deprivation had a strong impact on abnormal LV function through [Ca 2+ ]i regulation. In addition, evidence was found that in obese-insulin resistant rats, estrogen deprivation severely aggravates LV dysfunction via increased impairment of [Ca 2+ ]i homeostasis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Estrogênios/deficiência , Resistência à Insulina , Miócitos Cardíacos/metabolismo , Obesidade/complicações , Ovariectomia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Homeostase , Estresse Oxidativo , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
12.
Toxicol Appl Pharmacol ; 382: 114741, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31473249

RESUMO

The present study aimed to compare the effects of high dose atorvastatin and a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on the mitochondrial function in oxidative muscle fibers in obese female rats. Female Wistar rats were fed with either a normal diet (ND: n = 12) or a high-fat diet (HFD: n = 36) for a total of 15 weeks. At week 13, ND-fed rats received a vehicle, and HFD-fed rats were divided to three groups to receive either a vehicle, 40 mg/kg/day of atorvastatin, or 4 mg/kg/day of PCSK9 inhibitor (SBC-115076) for 3 weeks. Soleus muscles were investigated to assess mitochondrial ROS, membrane potential, swelling, mitochondrial-related protein expression, and level of malondialdehyde (MDA). The results showed that HFD-fed rats with vehicle developed obese-insulin resistance and dyslipidemia. Both atorvastatin and PCSK9 inhibitor reduced obesity and dyslipidemia, as well as improved insulin sensitivity in HFD-fed rats. However, the efficacy of PCSK9 inhibitor to increase weight loss and reduce dyslipidemia in HFD-fed rats was greater than those of atorvastatin. An increase in MDA level, ratio of p-Drp1ser616/total Drp1 protein, CPT1 protein, mitochondrial ROS, and membrane depolarization in the soleus muscle were observed in HFD-fed rats with vehicle. PCSK9 inhibitor enabled the restoration of all these parameters to normal levels. However, atorvastatin facilitated restoration of some parameters, including MDA level, p-Drp1ser616/total Drp1 ratio, and CPT1 protein expression. These findings suggest that PCSK9 inhibitor is superior to atorvastatin in instigating weight loss, cholesterol reduction, and attenuation of mitochondrial oxidative stress in oxidative muscle fibers of obese female rats.


Assuntos
Atorvastatina/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Resistência à Insulina/fisiologia , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Inibidores de PCSK9 , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Pró-Proteína Convertase 9/metabolismo , Ratos , Ratos Wistar
13.
Clin Sci (Lond) ; 133(24): 2431-2447, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31808509

RESUMO

Obese insulin resistance impairs cardiac mitochondrial dynamics by increasing mitochondrial fission and decreasing mitochondrial fusion, leading to mitochondrial damage, myocardial cell death and cardiac dysfunction. Therefore, inhibiting fission and promoting fusion could provide cardioprotection in this pre-diabetic condition. We investigated the combined effects of the mitochondrial fission inhibitor (Mdivi1) and fusion promoter (M1) on cardiac function in obese insulin-resistant rats. We hypothesized that Mdivi1 and M1 protect heart against obese insulin-resistant condition, but also there will be greater improvement using Mdivi1 and M1 as a combined treatment. Wistar rats (n=56, male) were randomly assigned to a high-fat diet (HFD) and normal diet (ND) fed groups. After feeding with either ND or HFD for 12 weeks, rats in each dietary group were divided into groups to receive either the vehicle, Mdivi1 (1.2 mg/kg, i.p.), M1 (2 mg/kg, i.p.) or combined treatment for 14 days. The cardiac function, cardiac mitochondrial function, metabolic and biochemical parameters were monitored before and after the treatment. HFD rats developed obese insulin resistance which led to impaired dynamics balance and function of mitochondria, increased cardiac cell apoptosis and dysfunction. Although Mdivi1, M1 and combined treatment exerted similar cardiometabolic benefits in HFD rats, the combined therapy showed a greater reduction in mitochondrial reactive oxygen species (ROS). Mitochondrial fission inhibitor and fusion promoter exerted similar levels of cardioprotection in a pre-diabetic condition.


Assuntos
Resistência à Insulina , Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Obesidade/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Mitocôndrias Cardíacas/metabolismo , Quinazolinonas/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
14.
Clin Sci (Lond) ; 133(3): 497-513, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30705107

RESUMO

An uncontrolled balance of mitochondrial dynamics has been shown to contribute to cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although inhibition of mitochondrial fission could ameliorate cardiac dysfunction, modulation of mitochondrial fusion by giving a fusion promoter at different time-points during cardiac I/R injury has never been investigated. We hypothesized that giving of a mitochondrial fusion promoter at different time-points exerts cardioprotection with different levels of efficacy in rats with cardiac I/R injury. Forty male Wistar rats were subjected to a 30-min ischemia by coronary occlusion, followed by a 120-min reperfusion. The rats were then randomly divided into control and three treated groups: pre-ischemia, during-ischemia, and onset of reperfusion. A pharmacological mitochondrial fusion promoter-M1 (2 mg/kg) was used for intervention. Reduced mitochondrial fusion protein was observed after cardiac I/R injury. M1 administered prior to ischemia exerted the highest level of cardioprotection by improving both cardiac mitochondrial function and dynamics regulation, attenuating incidence of arrhythmia, reducing infarct size and cardiac apoptosis, which led to the preservation of cardiac function and decreased mortality. M1 given during ischemia and on the onset of reperfusion also exerted cardioprotection, but with a lower efficacy than when given at the pre-ischemia time-point. Attenuating a reduction in mitochondrial fusion proteins during myocardial ischemia and at the onset of reperfusion exerted cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, thus reducing infarct size and improving cardiac function. These findings indicate that it could be a promising intervention with the potential to afford cardioprotection in the clinical setting of acute myocardial infarction.


Assuntos
Dinâmica Mitocondrial , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/administração & dosagem , Humanos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo
15.
Toxicol Appl Pharmacol ; 342: 79-85, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391240

RESUMO

Although insulin and atorvastatin have been shown to exert glycemic control and could improve brain function, the effects of atorvastatin or insulin as well as the combination of atorvastatin plus insulin on brain pathology in diabetes mellitus type 1 (T1DM) are unclear. Therefore, this study investigated the effect of atorvastatin, insulin or combined drugs on brain pathology in streptozotocin-induced diabetic rats. Thirty-six male rats were divided into two groups, a control group (n = 12) and a diabetic or experimental group (n = 24). Diabetic rats were further divided into four groups (n = 6/group) and the groups received either a vehicle (normal saline), atorvastatin (10 mg/kg/day), insulin (4 U/day) or a combination of the drugs for 4 weeks. The control group rats were divided into two groups (n = 6/group) to receive either just the vehicle or atorvastatin for 4 weeks. We found that streptozotocin-induced diabetic rats developed hyperglycemia, showing evidence of increased brain oxidative stress, impaired brain mitochondrial function, increased brain apoptosis, increased tau protein expression, increased phosphorylation of tau protein expression and amyloid beta levels, and decreased dendritic spine density. Although atorvastatin and insulin therapies led to an equal reduction in plasma glucose level in these diabetic rats, the combined drug therapy showed the greatest efficacy in decreasing plasma glucose level. Interestingly, atorvastatin, insulin and the combined drugs equally mitigated brain pathology. Our findings indicate that the combined drug therapy showed the greatest efficacy in improving metabolic parameters. However, atorvastatin, insulin and the combined drug therapy shared a similar efficacy in preventing brain damage in T1DM rats.


Assuntos
Atorvastatina/administração & dosagem , Encéfalo/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Encéfalo/patologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/patologia , Quimioterapia Combinada , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
16.
Clin Sci (Lond) ; 132(15): 1669-1683, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30065084

RESUMO

Altered cardiac mitochondrial dynamics with excessive fission is a predominant cause of cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although pre-ischemic inhibition of mitochondrial fission has been shown to improve cardiac function in I/R injury, the effects of this inhibitor given at different time-points during cardiac I/R injury are unknown. Fifty male Wistar rats were subjected to sham and cardiac I/R injury. For cardiac I/R injury, rats were randomly divided into pre-ischemia, during-ischemia, and upon onset of reperfusion group. A mitochondrial fission inhibitor, Mdivi-1 (mitochondrial division inhibitor 1) (1.2 mg/kg) was used. During I/R protocols, the left ventricular (LV) function, arrhythmia score, and mortality rate were determined. Then, the heart was removed to determine infarct size, mitochondrial function, mitochondrial dynamics, and apoptosis. Our results showed that Mdivi-1 given prior to ischemia, exerted the highest level of cardioprotection quantitated through the attenuated incidence of arrhythmia, reduced infarct size, improved cardiac mitochondrial function and fragmentation, and decreased cardiac apoptosis, leading to preserved LV function during I/R injury. Mdivi-1 administered during ischemia and upon the onset of reperfusion also improved cardiac mitochondrial function and LV function, but at a lower efficacy than when it was given prior to ischemia. Taken together, mitochondrial fission inhibition after myocardial ischemic insults still exerts cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and ultimately improved LV function after acute cardiac I/R injury in rats. These findings indicate its potential clinical usefulness.


Assuntos
Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Quinazolinonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiotônicos/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Distribuição Aleatória , Ratos Wistar , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
17.
Eur J Nutr ; 57(6): 2091-2104, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608320

RESUMO

PURPOSE: In metabolic syndrome, the composition of gut microbiota has been disrupted, and is associated with left ventricular (LV) dysfunction. Several types of prebiotics, probiotics, and synbiotics have been shown to exert cardioprotection by restoring gut microbiota from dysbiosis and reducing systemic inflammation. However, the effects of prebiotics such as xylooligosaccharides (XOS); probiotics such as Lactobacillus paracasei STII01 HP4, and synbiotics on metabolic and LV function in obese insulin-resistant rats have not been investigated. In this study, we hypothesized that prebiotics and probiotics improve metabolic parameters, heart rate variability (HRV), blood pressure (BP), and LV function by attenuating cardiac mitochondrial dysfunction, systemic inflammation, and oxidative stress, and that synbiotics provide greater efficacy than a single regimen in obese insulin resistance. METHODS: Rats were fed with either normal diet or high-fat diet (HFD) for 12 weeks and then rats in each dietary group were randomly subdivided into four subgroups to receive either a vehicle, prebiotics, probiotics, or synbiotics for another 12 weeks. Metabolic parameters, BP, HRV, LV function, cardiac mitochondrial function, systemic inflammation, and oxidative stress were determined. RESULTS: HFD-fed rats had obese insulin resistance with markedly increased systemic inflammatory marker [Serum LPS; ND; 0.6 ± 0.1 EU/ml vs. HFD; 5.7 ± 1.2 EU/ml (p < 0.05)], depressed HRV, and increased BP and LV dysfunction [%ejection fraction; ND; 93 ± 2% vs. HFD; 83 ± 2% (p < 0.05)]. Prebiotics, probiotics, and synbiotics attenuated insulin resistance by improving insulin sensitivity and lipid profiles. All interventions also improved HRV, BP, LV function [%ejection fraction; HFV; 81 ± 2% vs. HFPE; 93 ± 3%, HFPO; 92 ± 1%, HFC; 92 ± 2% (p < 0.05)] by attenuating mitochondrial dysfunction, oxidative stress, and systemic inflammation in obese insulin-resistant rats. CONCLUSION: Prebiotics, probiotics, and synbiotics shared similar efficacy in reducing insulin resistance and LV dysfunction in obese insulin-resistant rats.


Assuntos
Coração/fisiologia , Mitocôndrias Cardíacas , Prebióticos , Probióticos , Simbióticos , Animais , Diabetes Mellitus Experimental , Insulina , Resistência à Insulina , Masculino , Obesidade , Ratos , Ratos Wistar
18.
Gerontology ; 64(4): 333-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566382

RESUMO

BACKGROUND: We have previously reported that testosterone deprivation at a very young age accelerated, but did not aggravate, left-ventricular (LV) dysfunction in obese insulin-resistant rats. However, the effects of testosterone deprivation during adulthood on LV function in obese insulin-resistant rats remains unclear. We hypothesized that testosterone deprivation aggravates LV dysfunction and cardiac autonomic imbalance via the impairment of cardiac mitochondrial function and dynamics proteins, a reduction in insulin receptor function, and an increase in apoptosis in obese insulin-resistant rats. METHODS: Male rats were fed on either a normal diet (ND) or a high-fat diet (HFD) for 12 weeks. They were then subdivided into 2 groups: sham operation (NDS, HFS) and orchiectomy (NDO, HFO). Metabolic parameters, blood pressure, heart rate variability (HRV), and LV function were determined at baseline and before and after orchiectomy. Mitochondrial function and dynamics proteins, insulin signaling, and apoptosis were determined 12 weeks postoperatively. RESULTS: HFS rats exhibited obese insulin resistance, depressed HRV, and LV dysfunction. In HFO rats, systolic blood pressure was increased with more excessive depression of HRV and increased LV dysfunction, compared with HFS rats. These adverse cardiac effects were consistent with markedly increased mitochondrial dysfunction, reduced mitochondrial complex I and III proteins, reduced mitochondrial fusion proteins, and increased apoptosis, compared with HFS rats. However, testosterone deprivation did not lead to any alteration in the insulin-resistant condition in HFO rats, compared with HFS rats. CONCLUSION: We concluded that testosterone deprivation during adulthood aggravated the impairment of mitochondrial function, mitochondrial respiratory complex, mitochondrial dynamics proteins, and apoptosis, leading to LV dysfunction in obese insulin-resistant rats.


Assuntos
Resistência à Insulina/fisiologia , Mitocôndrias Cardíacas/metabolismo , Obesidade/fisiopatologia , Testosterona/deficiência , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Obesidade/complicações , Obesidade/patologia , Orquiectomia , Estresse Oxidativo , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/patologia
19.
Toxicol Appl Pharmacol ; 333: 43-50, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807765

RESUMO

Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance.


Assuntos
Adamantano/análogos & derivados , Anti-Inflamatórios , Compostos Benzidrílicos , Inibidores da Dipeptidil Peptidase IV , Glucosídeos , Fármacos Neuroprotetores , Nitrilas , Pirrolidinas , Inibidores do Transportador 2 de Sódio-Glicose , Adamantano/farmacologia , Adamantano/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Insulina/fisiologia , Resistência à Insulina , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Memória/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transportador 2 de Glucose-Sódio , Vildagliptina
20.
Horm Behav ; 85: 86-95, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27566237

RESUMO

Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n=6) or a high fat diet (HFD) (n=12) for 12weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n=6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Resistência à Insulina , Mitocôndrias/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Obesidade , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cognição/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Dieta Hiperlipídica , Masculino , Mitocôndrias/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA