Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2214703119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508666

RESUMO

Plants have evolved the ability to distinguish between symbiotic and pathogenic microbial signals. However, potentially cooperative plant-microbe interactions often abort due to incompatible signaling. The Nodulation Specificity 1 (NS1) locus in the legume Medicago truncatula blocks tissue invasion and root nodule induction by many strains of the nitrogen-fixing symbiont Sinorhizobium meliloti. Controlling this strain-specific nodulation blockade are two genes at the NS1 locus, designated NS1a and NS1b, which encode malectin-like leucine-rich repeat receptor kinases. Expression of NS1a and NS1b is induced upon inoculation by both compatible and incompatible Sinorhizobium strains and is dependent on host perception of bacterial nodulation (Nod) factors. Both presence/absence and sequence polymorphisms of the paired receptors contribute to the evolution and functional diversification of the NS1 locus. A bacterial gene, designated rns1, is required for activation of NS1-mediated nodulation restriction. rns1 encodes a type I-secreted protein and is present in approximately 50% of the nearly 250 sequenced S. meliloti strains but not found in over 60 sequenced strains from the closely related species Sinorhizobium medicae. S. meliloti strains lacking functional rns1 are able to evade NS1-mediated nodulation blockade.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Simbiose/genética , Genes Bacterianos , Especificidade da Espécie , Fixação de Nitrogênio
2.
Plant Cell ; 32(1): 42-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712407

RESUMO

Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Bactérias , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais , Simbiose/fisiologia , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Mol Plant Microbe Interact ; 35(5): 401-415, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35171648

RESUMO

Legumes are able to meet their nitrogen need by establishing nitrogen-fixing symbiosis with rhizobia. Nitrogen fixation is performed by rhizobia, which has been converted to bacteroids, in newly formed organs, the root nodules. In the model legume Medicago truncatula, nodule cells are invaded by rhizobia through transcellular tubular structures called infection threads (ITs) that are initiated at the root hairs. Here, we describe a novel M. truncatula early symbiotic mutant identified as infection-related epidermal factor (ief), in which the formation of ITs is blocked in the root hair cells and only nodule primordia are formed. We show that the function of MtIEF is crucial for the bacterial infection in the root epidermis but not required for the nodule organogenesis. The IEF gene that appears to have been recruited for a symbiotic function after the duplication of a flower-specific gene is activated by the ERN1-branch of the Nod factor signal transduction pathway and independent of the NIN activity. The expression of MtIEF is induced transiently in the root epidermal cells by the rhizobium partner or Nod factors. Although its expression was not detectable at later stages of symbiosis, complementation experiments indicate that MtIEF is also required for the proper invasion of the nodule cells by rhizobia. The gene encodes an intracellular protein of unknown function possessing a coiled-coil motif and a plant-specific DUF761 domain. The IEF protein interacts with RPG, another symbiotic protein essential for normal IT development, suggesting that combined action of these proteins plays a role in nodule infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Infecções Bacterianas , Medicago truncatula , Rhizobium , Infecções Bacterianas/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
4.
Proc Natl Acad Sci U S A ; 114(19): 5041-5046, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438996

RESUMO

In legume nodules, rhizobia differentiate into nitrogen-fixing forms called bacteroids, which are enclosed by a plant membrane in an organelle-like structure called the symbiosome. In the Inverted Repeat-Lacking Clade (IRLC) of legumes, this differentiation is terminal due to irreversible loss of cell division ability and is associated with genome amplification and different morphologies of the bacteroids that can be swollen, elongated, spherical, and elongated-branched, depending on the host plant. In Medicago truncatula, this process is orchestrated by nodule-specific cysteine-rich peptides (NCRs) delivered into developing bacteroids. Here, we identified the predicted NCR proteins in 10 legumes representing different subclades of the IRLC with distinct bacteroid morphotypes. Analysis of their expression and predicted sequences establishes correlations between the composition of the NCR family and the morphotypes of bacteroids. Although NCRs have a single origin, their evolution has followed different routes in individual lineages, and enrichment and diversification of cationic peptides has resulted in the ability to impose major morphological changes on the endosymbionts. The wide range of effects provoked by NCRs such as cell enlargement, membrane alterations and permeabilization, and biofilm and vesicle formation is dependent on the amino acid composition and charge of the peptides. These effects are strongly influenced by the rhizobial surface polysaccharides that affect NCR-induced differentiation and survival of rhizobia in nodule cells.


Assuntos
Proteínas de Bactérias/metabolismo , Medicago truncatula/microbiologia , Peptídeos/metabolismo , Rhizobiaceae/metabolismo , Rizoma/microbiologia , Simbiose/fisiologia , Proteínas de Bactérias/genética , Peptídeos/genética , Rhizobiaceae/genética
5.
Proc Natl Acad Sci U S A ; 114(17): 4543-4548, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28404731

RESUMO

The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells.


Assuntos
Epigenômica , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Medicago truncatula/genética , Ploidias , Sinorhizobium/fisiologia , Perfilação da Expressão Gênica , Medicago truncatula/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
6.
Proc Natl Acad Sci U S A ; 114(26): 6854-6859, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607058

RESUMO

Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix-). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/metabolismo , Medicago truncatula , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Microbiologia do Solo , Simbiose/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia
7.
J Bacteriol ; 201(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31182497

RESUMO

Soil bacteria called rhizobia trigger the formation of root nodules on legume plants. The rhizobia infect these symbiotic organs and adopt an intracellular lifestyle within the nodule cells, where they differentiate into nitrogen-fixing bacteroids. Several legume lineages force their symbionts into an extreme cellular differentiation, comprising cell enlargement and genome endoreduplication. The antimicrobial peptide transporter BclA is a major determinant of this process in Bradyrhizobium sp. strain ORS285, a symbiont of Aeschynomene spp. In the absence of BclA, the bacteria proceed until the intracellular infection of nodule cells, but they cannot differentiate into enlarged polyploid and functional bacteroids. Thus, the bclA nodule bacteria constitute an intermediate stage between the free-living soil bacteria and the nitrogen-fixing bacteroids. Metabolomics on whole nodules of Aeschynomene afraspera and Aeschynomene indica infected with the wild type or the bclA mutant revealed 47 metabolites that differentially accumulated concomitantly with bacteroid differentiation. Bacterial transcriptome analysis of these nodules demonstrated that the intracellular settling of the rhizobia in the symbiotic nodule cells is accompanied by a first transcriptome switch involving several hundred upregulated and downregulated genes and a second switch accompanying the bacteroid differentiation, involving fewer genes but ones that are expressed to extremely elevated levels. The transcriptomes further suggested a dynamic role for oxygen and redox regulation of gene expression during nodule formation and a nonsymbiotic function of BclA. Together, our data uncover the metabolic and gene expression changes that accompany the transition from intracellular bacteria into differentiated nitrogen-fixing bacteroids.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process, fueling the biogeochemical nitrogen cycle with reduced nitrogen. It also represents a promising strategy to reduce the use of chemical nitrogen fertilizers in agriculture, thereby improving its sustainability. This interaction leads to the intracellular accommodation of rhizobia within plant cells of symbiotic organs, where they differentiate into nitrogen-fixing bacteroids. In specific legume clades, this differentiation process requires the bacterial transporter BclA to counteract antimicrobial peptides produced by the host. Transcriptome analysis of Bradyrhizobium wild-type and bclA mutant bacteria in culture and in symbiosis with Aeschynomene host plants dissected the bacterial transcriptional response in distinct phases and highlighted functions of the transporter in the free-living stage of the bacterial life cycle.


Assuntos
Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Metaboloma , Nódulos Radiculares de Plantas/microbiologia , Transcriptoma , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Fixação de Nitrogênio
8.
J Plant Res ; 132(5): 695-703, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31325057

RESUMO

The development and functioning of the nitrogen fixing symbiosis between legume plants and soil bacteria collectively called rhizobia requires continuous chemical dialogue between the partners using different molecules such as flavonoids, lipo-chitooligosaccharides, polysaccharides and peptides. Agrobacterium rhizogenes mediated hairy root transformation of legumes is widely used to study the function of plant genes involved in the process. The identification of transgenic plant tissues is based on antibiotics/herbicide selection and/or the detection of different reporter genes that usually require special equipment such as fluorescent microscopes or destructive techniques and chemicals to visualize enzymatic activity. Here, we developed and efficiently used in hairy root experiments binary vectors containing the MtLAP1 gene driven by constitutive and tissue-specific promoters that facilitate the production of purple colored anthocyanins in transgenic tissues and thus allowing the identification of transformed roots by naked eye. Anthocyanin producing roots were able to establish effective symbiosis with rhizobia. Moreover, it was shown that species-specific allelic variations and a mutation preventing posttranslational acetyl modification of an essential nodule-specific cysteine-rich peptide, NCR169, do not affect the symbiotic interaction of Medicago truncatula cv. Jemalong with Sinorhizobium medicae strain WSM419. Based on the experiments, it could be concluded that it is preferable to use the vectors with tissue-specific promoters that restrict anthocyanin production to the root vasculature for studying biotic interactions of the roots such as symbiotic nitrogen fixation or mycorrhizal symbiosis.


Assuntos
Antocianinas/fisiologia , Medicago truncatula/fisiologia , Fixação de Nitrogênio , Raízes de Plantas/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Simbiose , Agrobacterium/genética , Biomarcadores/análise , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Transformação Genética
9.
Mol Plant Microbe Interact ; 31(2): 240-248, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28990486

RESUMO

Medicago truncatula shows a high level of specificity when interacting with its symbiotic partner Sinorhizobium meliloti. This specificity is mainly manifested at the nitrogen-fixing stage of nodule development, such that a particular bacterial strain forms nitrogen-fixing nodules (Nod+/Fix+) on one plant genotype but ineffective nodules (Nod+/Fix-) on another. Recent studies have just begun to reveal the underlying molecular mechanisms that control this specificity. The S. meliloti strain A145 induces the formation of Fix+ nodules on the accession DZA315.16 but Fix- nodules on Jemalong A17. A previous study reported that the formation of Fix- nodules on Jemalong A17 by S. meliloti A145 was conditioned by a single recessive allele named Mtsym6. Here we demonstrate that the specificity associated with S. meliloti A145 is controlled by multiple genes in M. truncatula, including NFS1 and NFS2 that encode nodule-specific cysteine-rich (NCR) peptides. The two NCR peptides acted dominantly to block rather than promote nitrogen fixation by S. meliloti A145. These two NCR peptides are the same ones that negatively regulate nitrogen-fixing symbiosis associated with S. meliloti Rm41.


Assuntos
Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Peptídeos/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/química
10.
Environ Microbiol ; 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921018

RESUMO

To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E > U and S > U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

11.
Annu Rev Microbiol ; 67: 611-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024639

RESUMO

Symbiosis between Rhizobium bacteria and legumes leads to the formation of the root nodule. The endosymbiotic bacteria reside in polyploid host cells as membrane-surrounded vesicles where they reduce atmospheric nitrogen to support plant growth by supplying ammonia in exchange for carbon sources and energy. The morphology and physiology of endosymbionts, despite their common function, are highly divergent in different hosts. In galegoid plants, the endosymbionts are terminally differentiated, uncultivable polyploid cells, with remarkably elongated and even branched Y-shaped cells. Bacteroid differentiation is controlled by host peptides, many of which have antibacterial activity and require the bacterial function of BacA. Although the precise and combined action of several hundred host peptides and BacA has yet to be discovered, similarities, especially to certain insect-bacterium symbioses involving likewise host peptides for manipulation of endosymbionts, suggest convergent evolution. Rhizobium-legume symbiosis provides a rich source of information for understanding host-controlled endosymbiotic life in eukaryotic cells.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose , Evolução Biológica , Fabaceae/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento
12.
Proc Natl Acad Sci U S A ; 112(49): 15232-7, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26401023

RESUMO

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


Assuntos
Cisteína/química , Medicago truncatula/fisiologia , Mutação , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/química , Simbiose
13.
Proc Natl Acad Sci U S A ; 111(14): 5183-8, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706863

RESUMO

Symbiosis between rhizobia soil bacteria and legume plants results in the formation of root nodules where plant cells are fully packed with nitrogen fixing bacteria. In the host cells, the bacteria adapt to the intracellular environment and gain the ability for nitrogen fixation. Depending on the host plants, the symbiotic fate of bacteria can be either reversible or irreversible. In Medicago and related legume species, the bacteria undergo a host-directed multistep differentiation process culminating in the formation of elongated and branched polyploid bacteria with definitive loss of cell division ability. The plant factors are nodule-specific symbiotic peptides. Approximately 600 of them are nodule-specific cysteine-rich (NCR) peptides produced in the rhizobium-infected plant cells. NCRs are targeted to the endosymbionts, and concerted action of different sets of peptides governs different stages of endosymbiont maturation, whereas the symbiotic function of individual NCRs is unknown. This study focused on NCR247, a cationic peptide exhibiting in vitro antimicrobial activities. We show that NCR247 acts in those nodule cells where bacterial cell division is arrested and cell elongation begins. NCR247 penetrates the bacteria and forms complexes with many bacterial proteins. Interaction with FtsZ required for septum formation is one of the host interventions for inhibiting bacterial cell division. Complex formation with the ribosomal proteins affects translation and contributes to altered proteome and physiology of the endosymbiont. Binding to the chaperone GroEL amplifies the NCR247-modulated biological processes. We show that GroEL1 of Sinorhizobium meliloti is required for efficient infection, terminal differentiation, and nitrogen fixation.


Assuntos
Medicago truncatula/metabolismo , Peptídeos/fisiologia , Proteínas de Plantas/química , Simbiose , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/biossíntese , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Ligação Proteica
14.
Mol Plant Microbe Interact ; 29(3): 210-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26713350

RESUMO

Medicago and closely related legume species from the inverted repeat-lacking clade (IRLC) impose terminal differentiation onto their bacterial endosymbionts, manifested in genome endoreduplication, cell enlargement, and loss of cell-division capacity. Nodule-specific cysteine-rich (NCR) secreted host peptides are plant effectors of this process. As bacteroids in other IRLC legumes, such as Cicer arietinum and Glycyrrhiza lepidota, were reported not to display features of terminal differentiation, we investigated the fate of bacteroids in species from these genera as well as in four other species representing distinct genera of the phylogenetic tree for this clade. Bacteroids in all tested legumes proved to be larger in size and DNA content than cultured cells; however, the degree of cell elongation was rather variable in the different species. In addition, the reproductive ability of the bacteroids isolated from these legumes was remarkably reduced. In all IRLC species with available sequence data, the existence of NCR genes was found. These results indicate that IRLC legumes provoke terminal differentiation of their endosymbionts with different morphotypes, probably with the help of NCR peptides.


Assuntos
Bactérias/classificação , Fabaceae/genética , Sequências Repetidas Invertidas/genética , Filogenia , Sequência de Aminoácidos , Bactérias/ultraestrutura , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas
15.
Plant Cell ; 25(9): 3584-601, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24082011

RESUMO

Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Sequência de Bases , Diferenciação Celular , Perfilação da Expressão Gênica , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Modelos Biológicos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Insercional , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Nodulação , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Via Secretória , Análise de Sequência de DNA , Sinorhizobium meliloti/fisiologia , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Ann Clin Microbiol Antimicrob ; 15(1): 43, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465344

RESUMO

BACKGROUND: Certain legume plants produce a plethora of AMP-like peptides in their symbiotic cells. The cationic subgroup of the nodule-specific cysteine-rich (NCR) peptides has potent antimicrobial activity against gram-negative and gram-positive bacteria as well as unicellular and filamentous fungi. FINDINGS: It was shown by scanning and atomic force microscopies that the cationic peptides NCR335, NCR247 and Polymyxin B (PMB) affect differentially on the surfaces of Sinorhizobium meliloti bacteria. Similarly to PMB, both NCR peptides caused damages of the outer and inner membranes but at different extent and resulted in the loss of membrane potential that could be the primary reason of their antimicrobial activity. CONCLUSIONS: The primary reason for bacterial cell death upon treatment with cationic NCR peptides is the loss of membrane potential.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Sinorhizobium meliloti/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/ultraestrutura , Medicago truncatula/fisiologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Proteínas de Plantas/metabolismo , Polimixina B/farmacologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/ultraestrutura
17.
Proteomics ; 15(13): 2291-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25690539

RESUMO

The symbiosis of Medicago truncatula with Sinorhizobium meliloti or Sinorhizobium medicae soil bacteria results in the formation of root nodules where bacteria inside the plant cells are irreversibly converted to polyploid, nondividing nitrogen-fixing bacteroids. Bacteroid differentiation is host-controlled and the plant effectors are symbiosis-specific secreted plant peptides. In the M. truncatula genome there are more than 600 symbiotic peptide genes including 500 small genes coding for nodule-specific cysteine-rich (NCR) peptides. While NCR transcripts represent >5% of the nodule transcriptome, the existence of only eight NCR peptides has been demonstrated so far. The predicted NCRs are secreted peptides targeted to the endosymbionts. Correspondingly, all the eight detected peptides were present in the bacteroids. Here, we report on large-scale detection of NCR peptides from nodules and from isolated, semipurified endosymbionts at various stages of their differentiation. In total 138 NCRs were detected in the bacteroids; 38 were cationic while the majority was anionic. The presence of early NCRs in nitrogen-fixing bacteroids indicates their high stability, and their long-term maintenance suggests persisting biological roles in the bacteroids.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Simbiose
18.
Gen Physiol Biophys ; 34(2): 135-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25675389

RESUMO

Antimicrobial peptides are small proteins that exhibit a broad spectrum of antimicrobial activity. Their chemical structure allows them to interact (attach and insert) with membranes. The fine details about this interaction and their mode of action are not fully clarified yet. In order to better understand this mechanism, we have performed in situ atomic force microscopy studies using two types of nodule specific cysteine-rich NCR peptides on Escherichia coli bacteria and on natural purple membrane. On intact bacteria, both NCR247 and NCR335 caused increase in the surface roughness, indicating the damage of the bacterial cell envelope. In case of the tightly packed purple membrane, it is clear that the peptides prefer to disrupt the border of the disks indicating a strong lipid preference of the interaction. These results verify the concept that the first target of NCR peptides is probably the bacterial cell envelope, especially the lipid matrix.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Cisteína/química , Escherichia coli/química , Microscopia de Força Atômica/métodos , Mapeamento de Interação de Proteínas/métodos , Membrana Purpúrea/química , Sítios de Ligação , Ligação Proteica , Estresse Mecânico
19.
Sci Rep ; 14(1): 25288, 2024 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455683

RESUMO

The Golden Gate method is an efficient tool for seamless assembly of multiple DNA fragments, which uses Type IIS restriction endonucleases, cleaving the DNA outside of their recognition site to release DNA parts from PCR fragments or entry clones, thus allowing the design of overhangs for ligation at will. However, the construction of the entry clones requires the use of other restriction enzyme(s) or cloning techniques and different entry vectors for the individual overhangs. Here, we present a simplified Golden Gate cloning approach termed Golden EGG. It features (1) a single entry vector with a specific cloning site to host the DNA parts; (2) a unique primer design to create the restriction enzyme recognition site to release the fragments with the overhangs at will; (3) the use of a single Type IIS enzyme for the construction of both the entry and destination clones; (4) a specific temperature profile during the digestion-ligation reaction. Our user-friendly, streamlined method retains the key attributes of the Golden Gate technique, while offering the potential to generate compatible parts with any existing Golden Gate toolkit and to be accessible to a wide user base without the need for extensive acquisition of new vectors or expensive enzymes.


Assuntos
Clonagem Molecular , Vetores Genéticos , Clonagem Molecular/métodos , Vetores Genéticos/genética , DNA/genética , DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/genética , Reação em Cadeia da Polimerase
20.
Sci Adv ; 10(31): eadp6436, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083610

RESUMO

Host range specificity is a prominent feature of the legume-rhizobial symbiosis. Sinorhizobium meliloti and Sinorhizobium medicae are two closely related species that engage in root nodule symbiosis with legume plants of the Medicago genus, but certain Medicago species exhibit selectivity in their interactions with the two rhizobial species. We have identified a Medicago receptor-like kinase, which can discriminate between the two bacterial species, acting as a genetic barrier against infection by most S. medicae strains. Activation of this receptor-mediated nodulation restriction requires a bacterial gene that encodes a glycine-rich octapeptide repeat protein with distinct variants capable of distinguishing S. medicae from S. meliloti. This study sheds light on the coevolution of host plants and rhizobia, shaping symbiotic selectivity in their respective ecological niches.


Assuntos
Simbiose , Especificidade da Espécie , Medicago/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA