Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Am J Hum Genet ; 111(3): 509-528, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412861

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Am J Hum Genet ; 111(8): 1643-1655, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39089258

RESUMO

The term "recurrent constellations of embryonic malformations" (RCEM) is used to describe a number of multiple malformation associations that affect three or more body structures. The causes of these disorders are currently unknown, and no diagnostic marker has been identified. Consequently, providing a definitive diagnosis in suspected individuals is challenging. In this study, genome-wide DNA methylation analysis was conducted on DNA samples obtained from the peripheral blood of 53 individuals with RCEM characterized by clinical features recognized as VACTERL and/or oculoauriculovertebral spectrum association. We identified a common DNA methylation episignature in 40 out of the 53 individuals. Subsequently, a sensitive and specific binary classifier was developed based on the DNA methylation episignature. This classifier can facilitate the use of RCEM episignature as a diagnostic biomarker in a clinical setting. The study also investigated the functional correlation of RCEM DNA methylation relative to other genetic disorders with known episignatures, highlighting the common genomic regulatory pathways involved in the pathophysiology of RCEM.


Assuntos
Metilação de DNA , Humanos , Feminino , Masculino , Anormalidades Múltiplas/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/diagnóstico
3.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Estudos de Associação Genética , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Fenótipo , Humanos , Histona-Lisina N-Metiltransferase/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Cromossomos Humanos Par 9/genética , Metilação de DNA/genética , Feminino , Masculino , Criança , Pré-Escolar , Antígenos de Histocompatibilidade/genética , Adolescente , Cardiopatias Congênitas/genética , Haploinsuficiência/genética , Mutação
4.
Am J Hum Genet ; 111(7): 1330-1351, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815585

RESUMO

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Metilação de DNA/genética , Epigênese Genética , Epilepsia/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Ubiquitina-Proteína Ligases/metabolismo
5.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865086

RESUMO

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Metilação de DNA/genética , Proteínas/genética , DNA/metabolismo
6.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071997

RESUMO

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Feminino , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações , Haploinsuficiência/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Humanos
7.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044892

RESUMO

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Anomalia de Pelger-Huët , Núcleo Celular/genética , Criança , Cromatina , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade , Anomalia de Pelger-Huët/genética
8.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884529

RESUMO

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

9.
Hum Genet ; 143(8): 965-978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39028335

RESUMO

ARID1B is the most frequently mutated gene in Coffin-Siris syndrome (CSS). To date, the vast majority of causative variants reported in ARID1B are truncating, leading to nonsense-mediated mRNA decay. In the absence of experimental data, only few ARID1B amino acid substitutions have been classified as pathogenic, mainly based on clinical data and their de novo occurrence, while most others are currently interpreted as variants of unknown significance. The present study substantiates the pathogenesis of ARID1B non-truncating/NMD-escaping variants located in the SMARCA4-interacting EHD2 and DNA-binding ARID domains. Overexpression assays in cell lines revealed that the majority of EHD2 variants lead to protein misfolding and formation of cytoplasmic aggresomes surrounded by vimentin cage-like structures and co-localizing with the microtubule organisation center. ARID domain variants exhibited not only aggresomes, but also nuclear aggregates, demonstrating robust pathological effects. Protein levels were not compromised, as shown by quantitative western blot analysis. In silico structural analysis predicted the exposure of amylogenic segments in both domains due to the nearby variants, likely causing this aggregation. Genome-wide transcriptome and methylation analysis in affected individuals revealed expression and methylome patterns consistent with those of the pathogenic haploinsufficiency ARID1B alterations in CSS cases. These results further support pathogenicity and indicate two approaches for disambiguation of such variants in everyday practice. The few affected individuals harbouring EHD2 non-truncating variants described to date exhibit mild CSS clinical traits. In summary, this study paves the way for the re-evaluation of previously unclear ARID1B non-truncating variants and opens a new era in CSS genetic diagnosis.


Assuntos
Proteínas de Ligação a DNA , Face , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço , Fatores de Transcrição , Humanos , Deficiência Intelectual/genética , Micrognatismo/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deformidades Congênitas da Mão/genética , Pescoço/anormalidades , Face/anormalidades , Anormalidades Múltiplas/genética , Mutação , Masculino , Agregados Proteicos
10.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38787418

RESUMO

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Assuntos
Metilação de DNA , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Criança
11.
Genet Med ; 26(3): 101041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054406

RESUMO

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiências do Desenvolvimento/genética , Metilação de DNA/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome
12.
Genet Med ; 26(10): 101226, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097820

RESUMO

PURPOSE: Valproic acid or valproate is an effective antiepileptic drug; however, embryonic exposure to valproate can result in a teratogenic disorder referred to as fetal valproate syndrome (OMIM #609442). Currently there are no diagnostic biomarkers for the condition. This study aims to define an episignature biomarker for teratogenic antenatal exposure to valproate. METHODS: DNA extracted from peripheral blood of individuals with teratogenic antenatal exposure to valproate was processed using DNA methylation microarrays. Subsequently, methylation profiling and construction of support vector machine classifiers were performed in R. RESULTS: Genomic DNA methylation analysis was applied, and a distinct DNA methylation profile was identified in the majority of affected individuals. This profile was used to develop a diagnostic episignature classifier. The valproate exposure episignature exhibited high sensitivity and specificity relative to a large reference data set of unaffected controls and individuals with a wide spectrum of syndromic disorders with episignatures. Gene set enrichment analysis demonstrated an enrichment for terms associated with cell adhesion, including significant overrepresentation of the cadherin superfamily. CONCLUSION: This study provides evidence of a robust peripheral blood-based diagnostic epigenetic biomarker for a prenatal teratogenic disorder.


Assuntos
Metilação de DNA , Ácido Valproico , Humanos , Metilação de DNA/genética , Ácido Valproico/efeitos adversos , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/sangue , Anticonvulsivantes/efeitos adversos , Epigênese Genética , Biomarcadores/sangue , Masculino , Anormalidades Induzidas por Medicamentos
13.
Genet Med ; 26(5): 101075, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251460

RESUMO

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Assuntos
Metilação de DNA , Testes Genéticos , Doenças Raras , Humanos , Metilação de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Testes Genéticos/normas , Testes Genéticos/métodos , Feminino , Regiões Promotoras Genéticas/genética , Masculino , Variações do Número de Cópias de DNA/genética , Criança , Adulto , Pré-Escolar , Impressão Genômica/genética
14.
Genet Med ; 26(5): 101076, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
15.
Genet Med ; : 101283, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39355979

RESUMO

BACKGROUND: ARID1A/ARID1B haploinsufficiency leads to Coffin-Siris syndrome, duplications of ARID1A lead to a distinct clinical syndrome, whilst ARID1B duplications have not yet been linked to a phenotype. METHODS: We collected patients with duplications encompassing ARID1A and ARID1B duplications. RESULTS: 16 ARID1A and 13 ARID1B duplication cases were included with duplication sizes ranging from 0.1-1.2 Mb(1-44 genes) for ARID1A and 0.9-10.3 Mb(2-101 genes) for ARID1B. Both groups shared features, with ARID1A patients having more severe intellectual disability, growth delay and congenital anomalies. DNA methylation analysis showed that ARID1A patients had a specific methylation pattern in blood, which differed from controls and from patients with ARID1A or ARID1B loss-of-function variants. ARID1B patients appeared to have a distinct methylation pattern, similar to ARID1A duplication patients, but further research is needed to validate these results. Five cases with duplications including ARID1A or ARID1B initially annotated as duplications of uncertain significance were evaluated using PhenoScore and DNA methylation re-analysis, resulting in the reclassification of two ARID1A and two ARID1B duplications as pathogenic. CONCLUSION: Our findings reveal that ARID1B duplications manifest a clinical phenotype and ARID1A duplications have a distinct episignature that overlaps with that of ARID1B duplications, providing further evidence for a distinct and emerging BAFopathy caused by whole gene duplication rather than haploinsufficiency.

16.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38384171

RESUMO

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 9 , Metilação de DNA , Cardiopatias Congênitas , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Cromossomos Humanos Par 9/genética , Masculino , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Duplicação Cromossômica/genética , Criança , Pré-Escolar , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Adolescente , Fenótipo
17.
Am J Med Genet A ; : e63849, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166703

RESUMO

We report a 40-year-old African American female with a novel variant in exon 8 of DNA methyltransferase 3 alpha (DNMT3A), (NM_022552.4: c.905G>C, p.G302A) who presented with a history of recurrent carotid paragangliomas, mediastinal mass, intellectual disability, dysarthria, cholelithiasis, diabetes mellitus, hypertension, and dysmorphic features. We interpret this novel variant as likely pathogenic and causative for the patient's syndromic features of Heyn-Sproul-Jackson syndrome. Heyn-Sproul-Jackson syndrome is a condition caused by gain-of-function genetic changes in DNMT3A. Paragangliomas have also been observed in non-syndromic patients with genetic alterations in DNMT3A. We describe a patient with clinical features of Heyn-Sproul-Jackson syndrome such as intellectual disability, dysarthria, brachydactyly, and lack of brain MRI findings to add evidence to associate paragangliomas with DNMT3A and draw particular attention to the potential involvement of the proline-tryptophan-tryptophan-proline domain of DNMT3A.

18.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
19.
Genet Med ; 25(1): 63-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399132

RESUMO

PURPOSE: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS: We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS: A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION: We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Genoma
20.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA