Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Cytometry B Clin Cytom ; 106(4): 294-307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396223

RESUMO

The implementation of medical software and artificial intelligence (AI) algorithms into routine clinical cytometry diagnostic practice requires a thorough understanding of regulatory requirements and challenges throughout the cytometry software product lifecycle. To provide cytometry software developers, computational scientists, researchers, industry professionals, and diagnostic physicians/pathologists with an introduction to European Union (EU) and United States (US) regulatory frameworks. Informed by community feedback and needs assessment established during two international cytometry workshops, this article provides an overview of regulatory landscapes as they pertain to the application of AI, AI-enabled medical devices, and Software as a Medical Device in diagnostic flow cytometry. Evolving regulatory frameworks are discussed, and specific examples regarding cytometry instruments, analysis software and clinical flow cytometry in-vitro diagnostic assays are provided. An important consideration for cytometry software development is the modular approach. As such, modules can be segregated and treated as independent components based on the medical purpose and risk and become subjected to a range of context-dependent compliance and regulatory requirements throughout their life cycle. Knowledge of regulatory and compliance requirements enhances the communication and collaboration between developers, researchers, end-users and regulators. This connection is essential to translate scientific innovation into diagnostic practice and to continue to shape the development and revision of new policies, standards, and approaches.


Assuntos
Inteligência Artificial , Citometria de Fluxo , Software , Citometria de Fluxo/métodos , Humanos , Estados Unidos , União Europeia , Equipamentos e Provisões/normas
3.
Cytometry B Clin Cytom ; 106(3): 203-215, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38656036

RESUMO

The monocyte subset partitioning by flow cytometry, known as "monocyte assay," is now integrated into the new classifications as a supporting criterion for CMML diagnosis, if a relative accumulation of classical monocytes above 94% of total circulating monocytes is observed. Here we provide clinical flow cytometry laboratories with technical support adapted for the most commonly used cytometers. Step-by-step explanations of the gating strategy developed on whole peripheral blood are presented while underlining the most common difficulties. In a second part, interpretation recommendations of circulating monocyte partitioning from the dedicated French working group "CytHem-LMMC" are shared as well as the main pitfalls, including false positive and false negative cases. The particular flow-defined inflammatory profile is described and the usefulness of the nonclassical monocyte specific marker, namely slan, highlighted. Examples of reporting to the physician with frequent situations encountered when using the monocyte assay are also presented.


Assuntos
Citometria de Fluxo , Monócitos , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Humanos , Monócitos/citologia , Monócitos/imunologia , Imunofenotipagem/métodos , Imunofenotipagem/normas
4.
Cytometry B Clin Cytom ; 106(3): 192-202, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38700195

RESUMO

The assessment of T-cell clonality by flow cytometry has long been suboptimal, relying on aberrant marker expression and/or intensity. The introduction of TRBC1 shows much promise for improving the diagnosis of T-cell neoplasms in the clinical flow laboratory. Most laboratories considering this marker already have existing panels designed for T-cell workups and will be determining how best to incorporate TRBC1. We present this comprehensive summary of TRBC1 and supplemental case examples to familiarize the flow cytometry community with its potential for routine application, provide examples of how to incorporate it into T-cell panels, and signal caution in interpreting the results in certain diagnostic scenarios where appropriate.


Assuntos
Citometria de Fluxo , Linfócitos T , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Humanos , Linfócitos T/imunologia , Imunofenotipagem/métodos , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/genética
5.
Cytometry B Clin Cytom ; 106(4): 228-238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407537

RESUMO

Flow cytometry is a key clinical tool in the diagnosis of many hematologic malignancies and traditionally requires close inspection of digital data by hematopathologists with expert domain knowledge. Advances in artificial intelligence (AI) are transferable to flow cytometry and have the potential to improve efficiency and prioritization of cases, reduce errors, and highlight fundamental, previously unrecognized associations with underlying biological processes. As a multidisciplinary group of stakeholders, we review a range of critical considerations for appropriately applying AI to clinical flow cytometry, including use case identification, low and high risk use cases, validation, revalidation, computational considerations, and the present regulatory frameworks surrounding AI in clinical medicine. In particular, we provide practical guidance for the development, implementation, and suggestions for potential regulation of AI-based methods in the clinical flow cytometry laboratory. We expect these recommendations to be a helpful initial framework of reference, which will also require additional updates as the field matures.


Assuntos
Inteligência Artificial , Citometria de Fluxo , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Humanos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-39032144

RESUMO

The publication of Clinical and Laboratory Standards Institute's guideline H62 has provided the flow cytometry community with much-needed guidance on development and validation of flow cytometric assays (CLSI, 2021). It has also paved the way for additional exploration of certain topics requiring additional guidance. Flow cytometric analysis of rare matrices, or unique and/or less frequently encountered specimen types, is one such topic and is the focus of this manuscript. This document is the result of a collaboration subject matter experts from a diverse range of backgrounds and seeks to provide best practice consensus guidance regarding these types of specimens. Herein, we define rare matrix samples in the setting of flow cytometric analysis, address validation implications and challenges with these samples, and describe important considerations of using these samples in both clinical and research settings.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39165120

RESUMO

The Clinical and Laboratory Standards Institute (CLSI) H62-Validation of Assays Performed by Flow Cytometry guideline, released in 2021, provides recommendations for platform workflow and quality system essentials, instrument setup and standardization, assay development and optimization and fit-for-purpose analytical method validation. In addition, CLSI H62 includes some recommendations for the validation strategies after a validated flow cytometric method has been modified. This manuscript builds on those recommendations and discusses the impact of different types of assay modifications on assay performance. Recommendations regarding which validation parameters to evaluate depending on the type of modification are provided. The impact of assay modification on the assay's intended use is discussed. When recommending minor deviations from the CLSI H62 process for a laboratory-initiated assay revision (e.g., specimen numbers for sensitivity, specificity, or precision studies), a rationale based on expert opinion is provided with the understanding that not every laboratory, assay type, and circumstance can be comprehensively addressed in this paper. These recommendations are meant as a practical recommendation and are not intended to be restrictive, prescriptive, or understood as necessarily sufficient to meet every specific requirement from regulatory bodies (e.g., FDA or New York State Department of Health).

8.
J Clin Oncol ; 42(24): 2873-2886, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723212

RESUMO

PURPOSE: Allogeneic hematopoietic stem-cell transplantation (HSCT) is the only potentially curative treatment for patients with myelodysplastic syndromes (MDS). Several issues must be considered when evaluating the benefits and risks of HSCT for patients with MDS, with the timing of transplantation being a crucial question. Here, we aimed to develop and validate a decision support system to define the optimal timing of HSCT for patients with MDS on the basis of clinical and genomic information as provided by the Molecular International Prognostic Scoring System (IPSS-M). PATIENTS AND METHODS: We studied a retrospective population of 7,118 patients, stratified into training and validation cohorts. A decision strategy was built to estimate the average survival over an 8-year time horizon (restricted mean survival time [RMST]) for each combination of clinical and genomic covariates and to determine the optimal transplantation policy by comparing different strategies. RESULTS: Under an IPSS-M based policy, patients with either low and moderate-low risk benefited from a delayed transplantation policy, whereas in those belonging to moderately high-, high- and very high-risk categories, immediate transplantation was associated with a prolonged life expectancy (RMST). Modeling decision analysis on IPSS-M versus conventional Revised IPSS (IPSS-R) changed the transplantation policy in a significant proportion of patients (15% of patient candidate to be immediately transplanted under an IPSS-R-based policy would benefit from a delayed strategy by IPSS-M, whereas 19% of candidates to delayed transplantation by IPSS-R would benefit from immediate HSCT by IPSS-M), resulting in a significant gain-in-life expectancy under an IPSS-M-based policy (P = .001). CONCLUSION: These results provide evidence for the clinical relevance of including genomic features into the transplantation decision making process, allowing personalizing the hazards and effectiveness of HSCT in patients with MDS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas , Transplante Homólogo , Humanos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Feminino , Idoso , Adulto , Fatores de Tempo , Sistemas de Apoio a Decisões Clínicas , Genômica , Técnicas de Apoio para a Decisão , Medição de Risco , Adulto Jovem
9.
Hemasphere ; 8(5): e64, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756352

RESUMO

Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA