Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
EMBO Rep ; 23(9): e53221, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35848459

RESUMO

The effect of radiation therapy on tumor vasculature has long been a subject of debate. Increased oxygenation and perfusion have been documented during radiation therapy. Conversely, apoptosis of endothelial cells in irradiated tumors has been proposed as a major contributor to tumor control. To examine these contradictions, we use multiphoton microscopy in two murine tumor models: MC38, a highly vascularized, and B16F10, a moderately vascularized model, grown in transgenic mice with tdTomato-labeled endothelium before and after a single (15 Gy) or fractionated (5 × 3 Gy) dose of radiation. Unexpectedly, even these high doses lead to little structural change of the perfused vasculature. Conversely, non-perfused vessels and blind ends are substantially impaired after radiation accompanied by apoptosis and reduced proliferation of their endothelium. RNAseq analysis of tumor endothelial cells confirms the modification of gene expression in apoptotic and cell cycle regulation pathways after irradiation. Therefore, we conclude that apoptosis of tumor endothelial cells after radiation does not impair vascular structure.


Assuntos
Células Endoteliais , Neoplasias , Animais , Apoptose , Células Endoteliais/metabolismo , Endotélio/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiação Ionizante
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000268

RESUMO

Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1-2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 µm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically. Owing to the lack of proton MRI signals in the lungs, we modified the VCAM-MPIO to include zirconium-89 (89Zr, t1/2 = 78.4 h) in order to allow the in vivo detection of lung metastases by positron emission tomography (PET). Using this new agent (89Zr-DFO-VCAM-MPIO), it was possible to detect the presence of micrometastases within the lung in vivo from ca. 140 µm in diameter. Histological analysis combined with autoradiography confirmed the specific binding of the agent to the VCAM-1 expressing vasculature at the sites of pulmonary micrometastases. By retaining the original VCAM-MPIO as the basis for this new molecular contrast agent, we have created a dual-modality (PET/MRI) agent for the concurrent detection of lung and brain micrometastases.


Assuntos
Meios de Contraste , Neoplasias Pulmonares , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Molécula 1 de Adesão de Célula Vascular , Zircônio , Animais , Molécula 1 de Adesão de Célula Vascular/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Imageamento por Ressonância Magnética/métodos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Micrometástase de Neoplasia/diagnóstico por imagem , Compostos Férricos/química , Humanos , Linhagem Celular Tumoral , Radioisótopos
3.
Eur J Nucl Med Mol Imaging ; 49(11): 3668-3678, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35614267

RESUMO

PURPOSE: Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD: We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS: Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION: Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Animais , Humanos , Indóis , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
4.
Br J Cancer ; 124(11): 1809-1819, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742147

RESUMO

BACKGROUND: The radiosensitising effect of the poly(ADP-ribose) polymerase inhibitor olaparib on tumours has been reported. However, its effect on normal tissues in combination with radiation has not been well studied. Herein, we investigated the therapeutic index of olaparib combined with hemithoracic radiation in a urethane-induced mouse lung cancer model. METHODS: To assess tolerability, A/J mice were treated with olaparib plus whole thorax radiation (13 Gy), body weight changes were monitored and normal tissue effects were assessed by histology. In anti-tumour (intervention) studies, A/J mice were injected with urethane to induce lung tumours, and were then treated with olaparib alone, left thorax radiation alone or the combination of olaparib plus left thorax radiation at 8 weeks (early intervention) or 18 weeks (late intervention) after urethane injection. Anti-tumour efficacy and normal tissue effects were assessed by visual inspection, magnetic resonance imaging and histology. RESULTS: Enhanced body weight loss and oesophageal toxicity were observed when olaparib was combined with whole thorax but not hemithorax radiation. In both the early and late intervention studies, olaparib increased the anti-tumour effects of hemithoracic irradiation without increasing lung toxicity. CONCLUSIONS: The addition of olaparib increased the therapeutic index of hemithoracic radiation in a mouse model of lung cancer.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/patologia , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Radiossensibilizantes/uso terapêutico , Índice Terapêutico , Tórax/efeitos da radiação , Resultado do Tratamento
5.
Eur Radiol ; 31(10): 7540-7549, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33783569

RESUMO

OBJECTIVES: Routine dosimetry calculations do not account for the presence of iodine in organs and tissues during CT acquisition. This study aims to investigate the impact of contrast agent (CA) on radiation dose. METHODS: First, relation between absorbed radiation dose and iodine concentrations was investigated using a cylindrical water phantom with iodine-saline dilution insertions. Subsequently, a retrospective study on abdominal dual-energy CT (DECT) patient data was performed to assess the increase of the local absorbed radiation dose compared to a non-contrast scan. Absorbed doses were estimated with Monte Carlo simulations using the individual CT voxel data of phantom and patients. Further, organ segmentations were performed to obtain the dose in liver, liver parenchyma, left kidney, right kidney, aorta, and spleen. RESULTS: In the phantom study, a linear relation was observed between the radiation dose normalized by computed tomography dose index (CTDI) and CA concentrations Iconc (mg/ml) for three tube voltages; [Formula: see text] = 0.14 × Iconc + 1.02, [Formula: see text] = 0.16 × Iconc + 1.21, [Formula: see text] = 0.16 × Iconc + 1.24, and for DECT acquisition; [Formula: see text] = 0.15 × Iconc + 1.09. Similarly, a linear relation was observed between the dose increase and the organ iodine contents (R2 = 0.86 and pvalue < 0.01) in the patient study. The relative doses increased in the liver (21 ± 5%), liver parenchyma (20 ± 5%), right kidney (37 ± 7%), left kidney (39 ± 7%), aorta (34 ± 6%) and spleen (26 ± 4%). In addition, the local dose distributions changed based on patient's anatomy and physiology. CONCLUSIONS: Compared to a non-contrast scan, the organ doses increase by 30% in contrast-enhanced abdominal CT. This study suggests considering CA in dosimetry calculations, epidemiological studies, and organ dose estimations while developing new CT protocols. KEY POINTS: • The presence of contrast media increases radiation absorption in CT, and this increase is related to the iodine content in the organs. • The increased radiation absorption due to contrast media can lead to an average 30% increase in absorbed organ dose. • Iodine should be considered in CT radiation safety studies.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Estudos Retrospectivos
6.
Glia ; 68(2): 280-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31479168

RESUMO

Translocator protein (TSPO) expression is increased in activated glia, and has been used as a marker of neuroinflammation in PET imaging. However, the extent to which TSPO upregulation reflects a pro- or anti-inflammatory phenotype remains unclear. Our aim was to determine whether TSPO upregulation in astrocytes and microglia/macrophages is limited to a specific inflammatory phenotype. TSPO upregulation was assessed by flow cytometry in cultured astrocytes, microglia, and macrophages stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF), or interleukin-4 (Il-4). Subsequently, mice were injected intracerebrally with either a TNF-inducing adenovirus (AdTNF) or IL-4. Glial expression of TSPO and pro-/anti-inflammatory markers was assessed by immunohistochemistry/fluorescence and flow cytometry. Finally, AdTNF or IL-4 injected mice underwent PET imaging with injection of the TSPO radioligand 18 F-DPA-713, followed by ex vivo autoradiography. TSPO expression was significantly increased in pro-inflammatory microglia/macrophages and astrocytes both in vitro, and in vivo after AdTNF injection (p < .001 vs. control hemisphere), determined both histologically and by FACS. Both PET imaging and autoradiography revealed a significant (p < .001) increase in 18 F-DPA-713 binding in the ipsilateral hemisphere of AdTNF-injected mice. In contrast, no increase in either TSPO expression assessed histologically and by FACS, or ligand binding by PET/autoradiography was observed after IL-4 injection. Taken together, these results suggest that TSPO imaging specifically reveals the pro-inflammatory population of activated glial cells in the brain in response to inflammatory stimuli. Since the inflammatory phenotype of glial cells is critical to their role in neurological disease, these findings may enhance the utility and application of TSPO imaging.


Assuntos
Astrócitos/metabolismo , Inflamação/tratamento farmacológico , Microglia/metabolismo , Neuroglia/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos
7.
AJR Am J Roentgenol ; 213(2): 404-409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31012759

RESUMO

OBJECTIVE. The purpose of this study is to investigate the contributing effect of contrast media (CM) iodine dose on radiation-induced DNA damage in blood lymphocytes during a cardiac CT scan. MATERIALS AND METHODS. The minipigs were exposed 12 times in total to a fixed cardiac CT scan protocol. An unenhanced and two CM injection protocols were considered, the latter with 50% saline diluted (160 mg I/mL) and standard iodixanol. Blood samples were collected before and after CT, and radiation-induced DNA double-strand breaks were assessed using γ-H2AX (H2A histone family member X) immunofluorescent staining of the blood lymphocytes. Significant differences in foci numbers were investigated with an independent sample t test. In addition, a numeric dosimetry model was applied that simulates the cardiac CT scan, with the heart represented by a blood volume containing a mixture of six iodine concentrations (0, 10, 20, 30, 40, and 50 mg I/mL). RESULTS. Compared with the unenhanced (0 mg I/mL) protocol, the number of γ-H2AX foci per cell increased significantly (p < 0.038), by 56.1% for the reduced iodine dose (160 mg I/mL) and by 141.1% for the standard iodine dose (320 mg I/mL) protocols. These in vivo results are confirmed by the dosimetry simulation model, in which 78.8% and 133.7% increases in locally absorbed blood dose in the left ventricle were observed for the reduced and standard iodine dose protocols, respectively. CONCLUSION. Administration of CM during a cardiac CT examination significantly increases radiation-induced DNA damage in blood lymphocytes. Moreover, a lower CM iodine dose results in a reduced level of DNA damage, at constant radiation exposure.


Assuntos
Meios de Contraste/efeitos adversos , Dano ao DNA , Cardiopatias/diagnóstico por imagem , Lesões por Radiação/sangue , Lesões por Radiação/etiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Ácidos Tri-Iodobenzoicos/efeitos adversos , Animais , Método de Monte Carlo , Estudos Prospectivos , Exposição à Radiação/efeitos adversos , Suínos , Porco Miniatura
8.
J Am Chem Soc ; 140(5): 1572-1575, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29301394

RESUMO

The 18F-labeling of 5-(trifluoromethyl)-dibenzothiophenium trifluoromethanesulfonate, commonly referred to as the Umemoto reagent, has been accomplished applying a halogen exchange 18F-fluorination with 18F-fluoride, followed by oxidative cyclization with Oxone and trifluoromethanesulfonic anhydride. This new 18F-reagent allows for the direct chemoselective 18F-labeling of unmodified peptides at the thiol cysteine residue.


Assuntos
Hidrocarbonetos Fluorados/síntese química , Peptídeos/química , Radioisótopos de Flúor/química , Hidrocarbonetos Fluorados/química , Estrutura Molecular
9.
Hepatology ; 62(2): 521-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25854806

RESUMO

UNLABELLED: Myeloid cells are known to mediate metastatic progression. Here, we attempted to elucidate the mechanisms underlying these effects by identifying gene expression alterations in cancer cells forming hepatic metastases after myeloid cell depletion. Hepatic metastases are heavily infiltrated by CD11b(+) myeloid cells. We established hepatic metastases in transgenic CD11b-diphtheria toxin receptor mice by intrasplenic injection of MC38 colon and Lewis lung carcinoma cells before depleting myeloid cells with diphtheria toxin. Myeloid cell depletion inhibited metastatic growth with a marked diminishment of tumor vasculature. Expression of ANGPTL7 (angiopoietin-like 7), a protein not previously linked to metastasis, was highly up-regulated in cancer cells after myeloid cell depletion. This effect was duplicated in tissue culture, where coculture of cancer cells with tumor-conditioned myeloid cells from liver metastases or myeloid cell conditioned media down-regulated ANGPTL7 expression. Analogous to myeloid cell depletion, overexpression of ANGPTL7 in cancer cells significantly reduced hepatic metastasis formation and angiogenesis. We found that ANGPTL7 itself has strong antiangiogenic effects in vitro. Furthermore, analysis of The Cancer Genome Atlas colorectal and breast cancer data sets revealed striking ANGPTL7 underexpression in cancerous compared to normal tissues. Also, ANGPTL7 was down-regulated in metastatic liver colonies of colorectal cancer patients compared to their adjacent liver tissue. CONCLUSION: Myeloid cells promote liver metastasis by down-regulating ANGPTL7 expression in cancer cells; our findings implicate ANGPTL7 as a mediator of metastatic progression and a potential target for interference with liver metastases.


Assuntos
Angiopoietinas/genética , Antígeno CD11b/genética , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Células Mieloides/patologia , Neovascularização Patológica/patologia , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Movimento Celular , Meios de Cultivo Condicionados , Regulação para Baixo , Feminino , Humanos , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/fisiologia , Células Tumorais Cultivadas
10.
Eur J Nucl Med Mol Imaging ; 42(11): 1707-1717, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26031435

RESUMO

PURPOSE: The efficacy of most anticancer treatments, including radiotherapy, depends on an ability to cause DNA double-strand breaks (DSBs). Very early during the DNA damage signalling process, the histone isoform H2AX is phosphorylated to form γH2AX. With the aim of positron emission tomography (PET) imaging of DSBs, we synthesized a (89)Zr-labelled anti-γH2AX antibody, modified with the cell-penetrating peptide, TAT, which includes a nuclear localization sequence. METHODS: (89)Zr-anti-γH2AX-TAT was synthesized using EDC/NHS chemistry for TAT peptide linkage. Desferrioxamine conjugation allowed labelling with (89)Zr. Uptake and retention of (89)Zr-anti-γH2AX-TAT was evaluated in the breast adenocarcinoma cell line MDA-MB-468 in vitro or as xenografts in athymic mice. External beam irradiation was used to induce DSBs and expression of γH2AX. Since (89)Zr emits ionizing radiation, detailed radiobiological measurements were included to ensure (89)Zr-anti-γH2AX-TAT itself does not cause any additional DSBs. RESULTS: Uptake of (89)Zr-anti-γH2AX-TAT was similar to previous results using (111)In-anti-γH2AX-TAT. Retention of (89)Zr-anti-γH2AX-TAT was eightfold higher at 1 h post irradiation, in cells expressing γH2AX, compared to non-irradiated cells or to non-specific IgG control. PET imaging of mice showed higher uptake of (89)Zr-anti-γH2AX-TAT in irradiated xenografts, compared to non-irradiated or non-specific controls (12.1 ± 1.6 vs 5.2 ± 1.9 and 5.1 ± 0.8%ID/g, respectively; p < 0.0001). The mean absorbed dose to the nucleus of cells taking up (89)Zr-anti-γH2AX-TAT was twofold lower compared to (111)In-anti-γH2AX-TAT. Additional exposure of neither irradiated nor non-irradiated cells nor tissues to (89)Zr-anti-γH2AX-TAT resulted in any significant changes in the number of observable DNA DSBs, γH2AX foci or clonogenic survival. CONCLUSION: (89)Zr-anti-γH2AX-TAT allows PET imaging of DNA DSBs in a tumour xenograft mouse model.


Assuntos
Anticorpos Monoclonais/imunologia , Quebras de DNA de Cadeia Dupla , Produtos do Gene tat/metabolismo , Histonas/imunologia , Imunoconjugados , Tomografia por Emissão de Pósitrons/métodos , Zircônio , Animais , Transporte Biológico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Histonas/metabolismo , Humanos , Imunoconjugados/metabolismo , Imunoconjugados/farmacocinética , Camundongos , Radioisótopos , Distribuição Tecidual
11.
J Magn Reson Imaging ; 37(6): 1499-504, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23023925

RESUMO

PURPOSE: To describe a combination of techniques using the excellent volumetric capacities of magnetic resonance imaging (MRI) while avoiding anesthesia and maintaining high-throughput capability for tumor volume measurement in the awake mouse. This approach presents an alternative to calipers which, although cheap, fast, and easy to use, introduce many biases for tumor volume estimation. MATERIALS AND METHODS: The murine CaNT subcutaneous xenograft model was used. A quiet and modestly T2-weighted spin-echo scan was acquired at 4.7T (TE = 15 msec, TR = 1100 msec, 0.5 mm isotropic resolution) while the awake mouse was held by hand in the magnet. This method was compared to standard MR in the anesthetized mouse and caliper measurements. RESULTS: The combination of techniques used allows rapid, accurate, and reproducible measurement of subcutaneous tumor volumes in awake mice. It is less sensitive to both intra- and interoperator-derived biases and avoids confounds from the compliance of the fat and skin around the tumor, as well as from the tumor itself. Moreover, the data remain available for retrieval and scrutiny and reanalysis. CONCLUSION: Rapid, accurate, and precise tumor volumetry can be performed in the awake mouse by handheld positioned MR.


Assuntos
Adenocarcinoma/patologia , Adenocarcinoma/veterinária , Imageamento por Ressonância Magnética/veterinária , Posicionamento do Paciente/veterinária , Restrição Física/veterinária , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/veterinária , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Tumoral , Vigília
12.
J Nucl Med ; 62(11): 1537-1544, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33789931

RESUMO

Imaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates. Here, we developed a controlled-expression model of nucleus-localized green fluorescent protein (GFP) to interrogate the technical limitations of intranuclear SPECT using radioimmunoconjugates, notably the lower target-abundance detection threshold. Methods: We stably transfected the lung adenocarcinoma cell line H1299 with an enhanced GFP (EGFP)-tagged histone 2B (H2B) and generated 4 cell lines expressing increasing levels of GFP. EGFP levels were quantified using Western blot, flow cytometry, and enzyme-linked immunosorbent assay. An anti-GFP antibody (GFP-G1) was modified using dibenzocyclooctyne-N3-based strain-promoted azide-alkyne cycloaddition with the cell-penetrating peptide TAT (GRKKRRQRRRPPQGYG), which also includes a nuclear localization sequence, and the metal ion chelator N3-Bn-diethylenetriamine pentaacetate (DTPA) to allow radiolabeling with 111In. Cell uptake of 111In-GFP-G1-TAT was evaluated across 5 cell clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice was quantified to determine the smallest amount of target epitope that could be detected using 111In-GFP-G1-TAT. Results: We generated 4 H1299 cell clones expressing different levels of H2B-EGFP (0-1 million copies per cell, including wild-type H1299 cells). GFP-G1 monoclonal antibody was produced and purified in house, and selective binding to H2B-EGFP was confirmed. The affinity (dissociation constant) of GFP-G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. 111In-GFP-G1-TAT uptake in H2B-EGFP-expressing cell clones correlated linearly with H2B-EGFP expression (P < 0.001). In vivo xenograft studies demonstrated that 111In-GFP-G1-TAT uptake in tumor tissue correlated linearly with expression of H2B-EGFP (P = 0.004) and suggested a lower target-abundance detection threshold of approximately 240,000 copies per cell. Conclusion: Here, we present a proof-of-concept demonstration that antibody-based imaging of intranuclear targets is capable both of detecting the presence of an epitope of interest with a copy number above 240,000 copies per cell and of determining differences in expression level above this threshold.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Proteínas de Fluorescência Verde , Limite de Detecção
13.
Med Phys ; 48(11): 7526-7533, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34564862

RESUMO

PURPOSE: To investigate the contrast media iodine dose dependency of radiation-induced DNA double-strand breaks (DSBs) during a coronary computed tomography angiography (CCTA) scan. METHODS: This prospective patient study was approved by the ethical committee. Between November 2018 and July 2019, 50 patients (31 males and 19 females, mean age 64 years) were included in the study, 45 CCTA and five noncontrast-enhanced (NCE) cardiac computed tomography (CT) patients. A single-heartbeat scan protocol with a patient-tailored contrast media injection protocol was used, administering a patient-specific iodine dose. DNA double-strand breaks were quantified using a γH2AX foci assay on peripheral blood lymphocytes. The net amount of γH2AX/cell was normalized to the individual patient CT dose by the size-specific dose estimate (SSDE). Correlation between the administered and blood-iodine dose and the SSDE normalized amount of DNA DSBs was investigated using a Pearson correlation test. RESULTS: CCTA patients were scanned with a mean CTDIvol of 10.6 ± 5.6 mGy, corresponding to a mean SSDE of 11.3 ± 5.3 mGy while the NCE cardiac CT patients were scanned with a mean CTDIvol of 6.00 ± 1.8 mGy, corresponding to a mean SSDE of 6.6 ± 2.7 mGy. The administered iodine dose ranged from 16.5 to 34.0 gI in the CCTA patients, resulting in a blood-iodine dose range from 5.1 to 15.0 gI in the exposed blood volume. A significant linear relationship (r = 0.79, p-value < 0.001) was observed between the blood iodine dose and SSDE normalized radiation-induced DNA DSBs. A similar significant linear relationship (r = 0.62, p-value < 0.001) was observed between the administered iodine dose and SSDE normalized radiation-induced DNA DSBs. CONCLUSIONS: This study shows that contrast media iodine dose increases the level of radiation-induced DNA DSBs in peripheral blood lymphocytes in a linear dose-dependent manner with CCTA. Importantly, the level of DNA DSBs can be reduced by lowering the administered iodine dose.


Assuntos
Quebras de DNA de Cadeia Dupla , Iodo , Angiografia por Tomografia Computadorizada , Meios de Contraste , Angiografia Coronária , DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação
14.
Magn Reson Imaging ; 81: 1-9, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33905831

RESUMO

Prospective cardiac gating during MRI is hampered by electromagnetic induction from the rapidly switched imaging gradients into the ECG detection circuit. This is particularly challenging in small animal MRI, as higher heart rates combined with a smaller myocardial mass render routine ECG detection challenging. We have developed an open-hardware system that enables continuously running MRI scans to be performed in conjunction with cardio-respiratory gating such that the relaxation-weighted steady state magnetisation is maintained throughout the scan. This requires that the R-wave must be detected reliably even in the presence of rapidly switching gradients, and that data previously acquired that were corrupted by respiratory motion re-acquired. The accurately maintained steady-state magnetisation leads to an improvement in image quality and removes alterations in intensity that may otherwise occur throughout the cardiac cycle and impact upon automated image analysis. We describe the hardware required to enable this and demonstrate its application and robust performance using prospectively cardio-respiratory gated CINE imaging that is operated at a single, constant TR. Schematics, technical drawings, component listing and assembly instructions are made publicly available.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Imagem Cinética por Ressonância Magnética , Animais , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos
15.
Tomography ; 7(1): 39-54, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681462

RESUMO

Standardisation of animal handling procedures for a wide range of preclinical imaging scanners will improve imaging performance and reproducibility of scientific data. Whilst there has been significant effort in defining how well scanners should operate and how in vivo experimentation should be practised, there is little detail on how to achieve optimal scanner performance with best practices in animal welfare. Here, we describe a system-agnostic, adaptable and extensible animal support cradle system for cardio-respiratory-synchronised, and other, multi-modal imaging of small animals. The animal support cradle can be adapted on a per application basis and features integrated tubing for anaesthetic and tracer delivery, an electrically driven rectal temperature maintenance system and respiratory and cardiac monitoring. Through a combination of careful material and device selection, we have described an approach that allows animals to be transferred whilst under general anaesthesia between any of the tomographic scanners we currently or have previously operated. The set-up is minimally invasive, cheap and easy to implement and for multi-modal, multi-vendor imaging of small animals.


Assuntos
Anestésicos , Coração , Animais , Coração/diagnóstico por imagem , Imagem Multimodal , Reprodutibilidade dos Testes
16.
J Control Release ; 337: 371-377, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274382

RESUMO

Treatment options for patients with pancreatic cancer are limited and survival prospects have barely changed over the past 4 decades. Chemoradiation treatment (CRT) has been used as neoadjuvant therapy in patients with borderline resectable disease to reduce tumour burden and increase the proportion of patients eligible for surgery. Antimetabolite drugs such as gemcitabine and 5-fluorouracil are known to sensitise pancreatic tumours to radiation treatment. Likewise, photodynamic therapy (PDT) has also been shown to enhance the effect of radiation therapy. However, PDT is limited to treating superficial lesions due to the attenuation of light by tissue. The ability of the related technique, sonodynamic therapy (SDT), to enhance CRT was investigated in two murine models of pancreatic cancer (PSN-1 and BxPC-3) in this study. SDT uses low intensity ultrasound to activate an otherwise non-toxic sensitiser, generating toxic levels of reactive oxygen species (ROS) locally. It is applicable to greater target depths than PDT due to the ability of ultrasound to propagate further than light in tissue. Both CRT and the combination of CRT plus SDT delayed tumour growth in the two tumour models. In the PSN-1 model, but not the BxPC-3 model, the combination treatment caused an increase in survival relative to CRT alone (p = 0.038). The improvement in survival conferred by the addition of SDT in this model may be related to differences in tumour architecture between the two models. MRI and US images showed that PSN-1 tumours were less well perfused and vascularised than BxPC-3 tumours. This poor vascularisation may explain why PSN-1 tumours were more susceptible to the effects of vascular damage exerted by SDT treatment.


Assuntos
Neoplasias Pancreáticas , Fotoquimioterapia , Terapia por Ultrassom , Animais , Fluoruracila/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio
17.
Adv Healthc Mater ; 9(21): e2001222, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965091

RESUMO

Magnetic resonance imaging (MRI) and computed tomography (CT) imaging with X-rays are crucial diagnostic techniques in medicine, especially in oncology for evaluating the response to treatment. Body movement causes image blurring and synchronized gating to the respiratory and cardiac cycles is required. Degradation of MRI and CT imaging by the presence of metal in electronic respiratory sensors has limited their use, with a preference for pressure balloons for detecting respiration, but these are cumbersome and insensitive. Here, graphene's role is studied as an electromagnetically transparent electrode in a piezoelectric graphene respiratory sensor (GRS) device designed specifically for dual gated MRI and CT imaging of small animals. The GRS is integrated into a 3D-printed cradle with all-carbon-based device life support (heating pad) and monitoring of small animals (electrocardiogram), enabling both heartbeat and respiration detection, significant improvements to throughput and reproducibility, and reduced animal suffering. This shows graphene's potential for a wide range of electromagnetic transparent electronics for medical imaging and diagnostics, beyond conventional metal electrodes.


Assuntos
Grafite , Animais , Coração , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Respiração
18.
J Nucl Med ; 61(12): 1756-1763, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32414951

RESUMO

Overexpression of tight-junction protein claudin-4 has been detected in primary and metastatic pancreatic cancer tissue and is associated with better prognosis in patients. Noninvasive measurement of claudin-4 expression by imaging methods could provide a means for accelerating detection and stratifying patients into risk groups. Clostridium perfringens enterotoxin (CPE) is a natural ligand for claudin-4 and holds potential as a targeting vector for molecular imaging of claudin-4 overexpression. A glutathione S-transferases (GST)-tagged version of the C terminus of CPE (cCPE) was previously used to delineate claudin-4 overexpression by SPECT but showed modest binding affinity and slow blood clearance in vivo. Methods: On the basis of the crystal structure of cCPE, a series of smaller cCPE194-319 mutants with putatively improved binding affinity for claudin-4 was generated by site-directed mutagenesis. All peptides were conjugated site-specifically on a C-terminal cysteine using maleimide-diethylenetriamine pentaacetate to enable radiolabeling with 111In. The binding affinity of all radioconjugates was evaluated in claudin-4-expressing PSN-1 cells and HT1080-negative controls. The specificity of all cCPE mutants to claudin-4 was assessed in HT1080 cells stably transfected with claudin-4. SPECT/CT imaging of BALB/c nude mice bearing PSN-1 or HT1080 tumor xenografts was performed to determine the claudin-4-targeting ability of these peptides in vivo. Results: Uptake of all cCPE-based radioconjugates was significantly higher in PSN-1 cells than in HT1080-negative controls. All peptides showed a marked improvement in affinity for claudin-4 in vitro when compared with previously reported values (dissociation constant: 2.2 ± 0.8, 3 ± 0.1, 4.2 ± 0.5, 10 ± 0.9, and 9.7 ± 0.7 nM). Blood clearance of [111In]In-cCPE194-319, as measured by SPECT, was considerably faster than that of [111In]In-cCPE.GST (half-life, <1 min). All radiopeptides showed significantly higher accumulation in PSN-1 xenografts than in HT1080 tumors at 90 min after injection of the tracer ([111In]In-cCPE194-319, 2.7 ± 0.8 vs. 0.4 ± 0.1 percentage injected dose per gram [%ID/g], P < 0.001; [111In]In-S313A, 2.3 ± 0.9 vs. 0.5 ± 0.1 %ID/g, P < 0.01; [111In]In-S307A + N309A + S313A, 2 ± 0.4 vs. 0.3 ± 0.1 %ID/g, P < 0.01; [111In]In-D284A, 2 ± 0.2 vs. 0.7 ± 0.1 %ID/g, P < 0.05; [111In]In-L254F + K257D, 6.3 ± 0.9 vs. 0.7 ± 0.2 %ID/g, P < 0.001). Conclusion: These optimized cCPE-based SPECT imaging agents show great promise as claudin-4-targeting vectors for in vivo imaging of claudin-4 overexpression in pancreatic cancer.


Assuntos
Claudina-4/metabolismo , Enterotoxinas/química , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Marcação por Isótopo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/patologia
19.
Magn Reson Imaging ; 67: 101-108, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935444

RESUMO

PURPOSE: High resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B0 shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images. The effect corrupts the composite echo image and limits the image resolution that is realised. A real-time adaptive B0 stabilisation during respiration gated 3D MGE scanning is shown to reduce image misalignment and improve detection of molecularly targeted iron oxide particles in composite images of the mouse brain. METHODS: An optional B0 measurement block consisting of a 16 µs hard pulse with FA 1°, an acquisition delay of 3.2 ms, followed by gradient spoiling in all three axes was added to a respiration gated 3D MGE scan. During the acquisition delay of each B0 measurement block the NMR signal was routed to a custom built B0 stabilisation unit which mixed the signal to an audio frequency nominally centred around 1000 Hz to enable an Arduino based single channel receiver to measure frequency shifts. The frequency shift was used to effect correction to the main magnetic field via the B0 coil. The efficacy of B0 stabilisation and respiration gating was validated in vivo and used to improve detection of molecularly targeted microparticles of iron oxide (MPIO) in a mouse model of acute neuroinflammation. RESULTS: Without B0 stabilisation 3D MGE image data exhibit varying mixtures of translation, scaling and blurring, which compromise the fidelity of the composite image. The real-time adaptive B0 stabilisation minimises corruption of the composite image as the images from the different echoes are properly aligned. The improved detection of molecularly targeted MPIO easily compensates for the scan time penalty of 14% incurred by the B0 stabilisation method employed. Respiration gating of the B0 measurement and the MRI scan was required to preserve high resolution detail, especially towards the back of the brain. CONCLUSIONS: High resolution imaging for the detection of molecularly targeted iron oxide particles in the mouse brain requires good stabilisation of the main B0 field, and can benefit from a respiration gated image acquisition strategy.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos Férricos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Animais , Feminino , Processamento de Imagem Assistida por Computador , Inflamação , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C
20.
J Nucl Med ; 61(7): 1006-1013, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31862800

RESUMO

Despite its widespread use in oncology, the PET radiotracer 18F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualization of high-grade pancreatic intraepithelial neoplasias (PanIN-3s), generally regarded as the noninvasive precursors of PDAC. The DNA damage response is known to be hyperactivated in late-stage PanINs. Therefore, we investigated whether the SPECT imaging agent 111In-anti-γH2AX-TAT allows visualization of the DNA damage repair marker γH2AX in PanIN-3s in an engineered mouse model of PDAC, to facilitate early detection of PDAC. Methods: Genetically engineered KPC (KRasLSL.G12D/+; p53LSL.R172H/+; PdxCre) mice were imaged with 18F-FDG and 111In-anti-γH2AX-TAT. The presence of PanIN/PDAC as visualized by histologic examination was compared with autoradiography and immunofluorescence. Separately, the survival of KPC mice imaged with 111In-anti-γH2AX-TAT was evaluated. Results: In KPC mouse pancreata, γH2AX expression was increased in high-grade PanINs but not in PDAC, corroborating earlier results obtained from human pancreas sections. Uptake of 111In-anti-γH2AX-TAT, but not 111In-IgG-TAT or 18F-FDG, within the pancreas correlated positively with the age of KPC mice, which correlated with the number of high-grade PanINs. 111In-anti-γH2AX-TAT localizes preferentially in high-grade PanIN lesions but not in established PDAC. Younger, non-tumor-bearing KPC mice that show uptake of 111In-anti-γH2AX-TAT in the pancreas survive for a significantly shorter time than mice with physiologic 111In-anti-γH2AX-TAT uptake. Conclusion:111In-anti-γH2AX-TAT imaging allows noninvasive detection of DNA damage repair signaling upregulation in preinvasive PanIN lesions and is a promising new tool to aid in the early detection and staging of pancreatic cancer.


Assuntos
Dano ao DNA , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/genética , Transdução de Sinais , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Gradação de Tumores , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA