Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Endocrinol (Oxf) ; 87(3): 300-311, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28445628

RESUMO

OBJECTIVE: Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-I and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families. DESIGN: Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives. METHODS: Serum levels of IGF-I, IGFBP-3, acid-labile subunit (ALS), and in vitro ternary complex formation (ivTCF) were determined. After sequencing the IGFALS gene, pathogenicity of novel identified variants was evaluated by in vitro expression in transfected Chinese hamster ovarian (CHO) cells. ALS protein was detected in patients' sera and CHO cells conditioned media and lysates by Western immunoblot (WIB). RESULTS: Four index cases and four relatives were diagnosed with ACLSD. The following variants were found: p.Glu35Glyfs*17, p.Glu35Lysfs*87, p.Leu213Phe, p.Asn276Ser, p.Leu409Phe, p.Ala475Val and p.Ser490Trp. ACLSD patients presented low IGF-I and low or undetectable levels of IGFBP-3 and ALS. Seven out of 8 patients did not form ivTCF. CONCLUSIONS: This study confirms previous findings in ACLSD, such as the low IGF-I and a more severe reduction in IGFBP-3 levels, and a gene dosage effect observed in heterozygous carriers (HC). In addition, father-to-son transmission (father compound heterozygous and mother HC), preservation of male fertility, and marginal ALS expression with potential involvement in preserved responsiveness to rhGH treatment, are all novel aspects, not previously reported in this condition.


Assuntos
Glicoproteínas/deficiência , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/análise , Adolescente , Adulto , Idoso , Animais , Proteínas de Transporte/genética , Criança , Pré-Escolar , Cricetulus , Família , Feminino , Fertilidade , Variação Genética , Glicoproteínas/genética , Transtornos do Crescimento/genética , Heterozigoto , Humanos , Lactente , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/deficiência , Fator de Crescimento Insulin-Like I/deficiência , América Latina , Masculino , Pessoa de Meia-Idade , Mutação , Transfecção , Adulto Jovem
2.
Front Endocrinol (Lausanne) ; 11: 624684, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613456

RESUMO

Introduction: Practice guidelines cannot recommend establishing a diagnosis of growth hormone deficiency (GHD) without performing growth hormone stimulation tests (GHST) in children with risk factors, due to the lack of sufficient evidence. Objective: Our goal was to generate an evidence-based prediction rule to diagnose GHD in children with growth failure and clinically identifiable risk factors. Methods: We studied a cohort of children with growth failure to build the prediction model, and a second, independent cohort to validate the prediction rule. To this end, we assessed the existence of: pituitary dysgenesis, midline abnormalities, (supra)sellar tumor/surgery, CNS infection, traumatic brain injury, cranial radiotherapy, chemotherapy, genetic GHD, pituitary hormone deficiencies, and neonatal hypoglycemia, cholestasis, or hypogenitalism. Selection of variables for model building was performed using artificial intelligence protocols. Specificity of the prediction rule was the main outcome measure in the validation set. Results: In the first cohort (n=770), the resulting prediction rule stated that a patient would have GHD if (s)he had: pituitary dysgenesis, or two or more anterior pituitary deficiencies, or one anterior pituitary deficiency plus: neonatal hypoglycemia or hypogenitalism, or diabetes insipidus, or midline abnormalities, or (supra)sellar tumor/surgery, or cranial radiotherapy ≥18 Gy. In the validation cohort (n=161), the specificity of the prediction rule was 99.2% (95% CI: 95.6-100%). Conclusions: This clinical rule predicts the existence of GHD with high specificity in children with growth disorders and clinically identifiable risk factors, thus providing compelling evidence to recommend that GHD can be safely diagnosed without recurring to GHST in neonates and children with growth failure and specific comorbidities.


Assuntos
Algoritmos , Estatura/fisiologia , Hormônio do Crescimento Humano/deficiência , Aprendizado de Máquina/normas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Nanismo Hipofisário/sangue , Nanismo Hipofisário/diagnóstico por imagem , Feminino , Humanos , Masculino , Guias de Prática Clínica como Assunto/normas , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Risco
3.
Artigo em Inglês | MEDLINE | ID: mdl-29739035

RESUMO

BACKGROUND: Congenital Hypopituitarism is caused by genetic and environmental factors. Over 30 genes have been implicated in isolated and/or combined pituitary hormone deficiency. The etiology remains unknown for up to 80% of the patients, but most cases have been analyzed by limited candidate gene screening. Mutations in the PROP1 gene are the most common known cause, and the frequency of mutations in this gene varies greatly by ethnicity. We designed a custom array to assess the frequency of mutations in known hypopituitarism genes and new candidates, using single molecule molecular inversion probes sequencing (smMIPS). METHODS: We used this panel for the first systematic screening for causes of hypopituitarism in children. Molecular inversion probes were designed to capture 693 coding exons of 30 known genes and 37 candidate genes. We captured genomic DNA from 51 pediatric patients with CPHD (n = 43) or isolated GH deficiency (IGHD) (n = 8) and their parents and conducted next generation sequencing. RESULTS: We obtained deep coverage over targeted regions and demonstrated accurate variant detection by comparison to whole-genome sequencing in a control individual. We found a dominant mutation GH1, p.R209H, in a three-generation pedigree with IGHD. CONCLUSIONS: smMIPS is an efficient and inexpensive method to detect mutations in patients with hypopituitarism, drastically limiting the need for screening individual genes by Sanger sequencing.

4.
Horm Res Paediatr ; 80(6): 413-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24335034

RESUMO

BACKGROUND: In acid-labile subunit (ALS)-deficient families, heterozygous carriers of IGFALS gene mutations are frequently shorter than their wild-type relatives, suggesting that IGFALS haploinsufficiency could result in short stature. We have characterized IGFALS gene variants in idiopathic short stature (ISS) and in normal children, determining their impact on height and the IGF system. PATIENTS AND METHODS: In 188 normal and 79 ISS children levels of IGF-1, IGFBP-3, ALS, ternary complex formation (TCF) and IGFALS gene sequence were determined. RESULTS: In sum, 9 nonsynonymous or frameshift IGFALS variants (E35Gfs*17, G83S, L97F, R277H, P287L, A330D, R493H, A546V and R548W) were found in 10 ISS children and 6 variants (G170S, V239M, N276S, R277H, G506R and R548W) were found in 7 normal children. If ISS children were classified according to the ability for TCF enhanced by the addition of rhIGFBP-3 (TCF+), carriers of pathogenic IGFALS gene variants were shorter and presented lower levels of IGF-1, IGFBP-3 and ALS in comparison to carriers of benign variants. In ISS families, subjects carrying pathogenic variants were shorter and presented lower IGF-1, IGFBP-3 and ALS levels than noncarriers. CONCLUSIONS: These findings suggest that heterozygous IGFALS gene variants could be responsible for short stature in a subset of ISS children with diminished levels of IGF-1, IGFBP-3 and ALS.


Assuntos
Estatura , Proteínas de Transporte/genética , Glicoproteínas/genética , Transtornos do Crescimento/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Proteínas de Transporte/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Mutação da Fase de Leitura/genética , Glicoproteínas/sangue , Heterozigoto , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA