RESUMO
Today, one of the most prevalent reasons for death among people is carcinoma. Because it is still on the increase throughout the world, there is a critical need for in- -depth research on the pathogenic mechanisms behind the disease as well as for efficient treatment. In the field of epigenetics, gene expression alterations that are inherited but not DNA sequence changes are investigated. Three key epigenetic changes, histone modifications, DNA methylation and non-coding RNA (ncRNA) expression, are principally responsible for the initiation and progression of different tumors. These changes are interconnected and constitute many epigenetic changes. A form of polyphenolic chemical obtained from plants called curcumin has great bioactivity against several diseases, specifically cancer. A naturally occurring substance called thymoquinone is well-known for its anticancer properties. Thymoquinone affects cancer cells through a variety of methods, according to preclinical studies. We retrieved information from popular databases, including PubMed, Google Scholar, and CNKI, to summarize current advancements in the efficiency of curcumin against cancer and its epigenetic regulation in terms of DNA methylation, histone modifications, and miRNA expression. The present investigation offers thorough insights into the molecular processes, based on epigenetic control, that underlie the clinical use of curcumin and thymoquinone in cancerous cells.
RESUMO
Malignant breast cancers are responsible for a growing number of deaths among women globally. The latest research has demonstrated that Wnt signaling is pivotal in this disease, regulating a safe microenvironment for the growth and proliferation of cancer cells, sustained stemness, resistance to therapy, and aggregate formation. The three highly conserved Wnt signaling pathways, Wnt-planar cell polarity (PCP), Wnt/ß-catenin signaling and Wnt-Ca2+ signaling, assume various roles in the maintenance and amelioration of breast cancer. In this review, we examine ongoing studies on the Wnt signaling pathways and discuss how dysregulation of these pathways promotes breast cancers. We also look at how Wnt dysregulation could be exploited to foster new treatments for malignant breast cancers.