Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 59(7): 1316-1326, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858515

RESUMO

OBJECTIVE: In different cohorts, 5%-30% of individuals with autism spectrum disorder (ASD) also have epilepsy. The high co-occurrence of these disorders suggests that a common mechanistic link may exist. The underlying pathophysiology of this comorbidity remains unknown. To investigate the mechanism(s) involved in the pathogenesis of ASD and epilepsy, we developed and validated a novel mouse model that concurrently exhibits hallmark features of both disorders. METHODS: We utilized inbred BTBR T+ Itpr3tf/J (BTBR) mice that exhibit the core behavioral characteristics of ASD (ie, impaired sociability, altered vocalizations, and restricted interests). BTBR mice received a lipopolysaccharide (LPS) or sterile saline injection at postnatal day (P)7, P14, or P21. Cytokine expression was analyzed for interleukin (IL)-1ß, IL-10, IL-6, and tumor necrosis factor α in brain tissue of P7 and adult BTBR mice. Adult BTBR mice were behaviorally analyzed for seizure susceptibility, sociability, communication deficits, and motor stereotypies, and monitored using chronic video-electroencephalography (EEG). RESULTS: Adult male and female BTBR mice treated at P7-P14 with LPS were more sensitive to pentylenetetrazol-induced seizures than saline-treated controls. ASD-like behaviors and hippocampal cytokine levels were unchanged between P7 LPS-treated BTBR mice and controls. EEG recordings from the dorsal hippocampus revealed a significant increase in number and frequency of seizures over the 4-week recording period (P60-P88) in BTBR mice postnatally treated with LPS at P7. These results indicate the presence of a comorbid epileptic phenotype in BTBR mice. SIGNIFICANCE: These findings suggest that an early postnatal immune challenge can increase brain excitability in adult BTBR mice and reveal an underlying epilepsy phenotype. This novel animal model may enable the elucidation of specific molecular alterations that are associated with the concurrent presentation of ASD and epilepsy, which could facilitate the development of targeted therapies for individuals affected by this comorbidity.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/fisiopatologia , Epilepsia/complicações , Epilepsia/fisiopatologia , Animais , Córtex Cerebral/fisiopatologia , Comorbidade , Citocinas/sangue , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Fenótipo , Gravidez
2.
Cannabis Cannabinoid Res ; 8(2): 283-298, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36108318

RESUMO

Background: The mechanisms underlying the clinical effects of CBD remain poorly understood. Given the increasing evidence for CBD's effects on mitochondria, we sought to examine in more detail whether CBD impacts mitochondrial function and neuronal integrity. Methods: We utilized BE(2)-M17 neuroblastoma cells or acutely isolated brain mitochondria from rodents using a Seahorse extracellular flux analyzer and a fluorescent spectrofluorophotometer assay. Mitochondrial ion channel activity and hippocampal long-term potentiation were measured using standard cellular electrophysiological methods. Spatial learning/memory function was evaluated using the Morris water maze task. Plasma concentrations of CBD were assessed with liquid chromatography-mass spectrometry, and cellular viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction neuronal injury assay. Results: At low micromolar concentrations, CBD reduced mitochondrial respiration, the threshold for mitochondrial permeability transition, and calcium uptake, blocked a novel mitochondrial chloride channel, and reduced the viability of hippocampal cells. These effects were paralleled by in vitro and in vivo learning/memory deficits. We further found that these effects were independent of cannabinoid receptor 1 and mitochondrial G-protein-coupled receptor 55. Conclusion: Our results provide evidence for concentration- and dose-dependent toxicological effects of CBD, findings that may bear potential relevance to clinical populations.


Assuntos
Encéfalo , Canabidiol , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Canabidiol/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Animais , Teste do Labirinto Aquático de Morris , Masculino , Camundongos , Ratos , Ratos Wistar
3.
Neuropharmacology ; 231: 109513, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948357

RESUMO

Epilepsy is at times a fatal disease. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality in people with intractable epilepsy and is defined by exclusion; non-accidental, non-toxicologic, and non-anatomic causes of death. While SUDEP often follows a bilateral tonic-clonic seizure, the mechanisms that ultimately lead to terminal apnea and then asystole remain elusive and there is a lack of preventative treatments. Based on the observation that discrete seizures lead to local and postictal vasoconstriction, resulting in hypoperfusion, hypoxia and behavioural disturbances in the forebrain we reasoned those similar mechanisms may play a role in SUDEP when seizures invade the brainstem. Here we tested this neurovascular-based hypothesis of SUDEP in awake non-anesthetized mice by pharmacologically preventing seizure-induced vasoconstriction, with cyclooxygenase-2 or L-type calcium channel antagonists. In both acute and chronic mouse models of seizure-induced premature mortality, ibuprofen and nicardipine extended life while systemic drug levels remained high enough to be effective. We also examined the potential role of spreading depolarization in the acute model of seizure-induced premature mortality. These data provide a proof-of-principle for the neurovascular hypothesis of SUDEP rather than spreading depolarization and the use of currently available drugs to prevent it.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Camundongos , Animais , Morte Súbita Inesperada na Epilepsia/prevenção & controle , Epilepsia/tratamento farmacológico , Epilepsia/complicações , Convulsões/prevenção & controle , Convulsões/complicações , Hipóxia/complicações , Morte Súbita/etiologia , Morte Súbita/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA