Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 23(3): 441-457, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35103863

RESUMO

Auricular deformities (Microtia) can cause physical, social as well as psychological impacts on a patient's wellbeing. Biofabrication of a complex structure such as ear pinna is not precise with currently available techniques. These limitations can be overcome with the help of tissue engineering. In this article, the authors presented molding and three dimensional (3D) printing to generate a flexible, human size ear pinna. The decellularization of goat ear cartilage protocol and bioink alkaline digestion protocol was followed to yield complete removal of all cellular components without changing the properties of the Extra Cellular Matrix (ECM). Decellularized scaffold used in molding technology and 3D printing technology Computer-Aided Design /Stereolithography (CAD/STL) uses bioink to construct the patient-specific ear. In vivo biocompatibility of the both ear pinnae showed demonstrable recellularization. Histology and scanning electron microscopy analysis revealed the recellularization of cartilage-specific cells and the development of ECM in molded and 3D printed ear pinna after transplantation. Both the techniques provided ideal results for mechanical properties such as elasticity. Vascular Associated Protein expression revealed specific vasculogenic pattern (angiogenesis) in transplanted molded pinna. Chondrocyte specific progenitor cells express CD90+ which highlighted newly developed chondrocytes in both the grafts which indicated that the xenograft was accepted by the rat. Transplantation of molded as well as 3D ear pinna was successful in an animal model and can be available for clinical treatments as a medical object to cure auricular deformities.


Assuntos
Pavilhão Auricular , Engenharia Tecidual , Animais , Cartilagem da Orelha , Matriz Extracelular/química , Humanos , Impressão Tridimensional , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Biomed Mater ; 16(5)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34280915

RESUMO

Biofabrication of a complex structure such as ear pinna is not precise with currently available techniques. Auricular deformities (e.g. microtia) can cause physical, social as well as psychological impacts on a patient's wellbeing. Currently available surgical techniques and transplantation methods have many limitations that can be overcome with the help of 3D bioprinting technology. Printable bioink enriched with cartilage-specific extracellular matrix (ECM) synthesis was done by digesting goat ear pinna cartilage and polymerized by adding polyvinyl alcohol and gelatine. Rheological analysis and Fourier-transform infrared spectroscopy were used for the characterization of bioink to get desired viscosity and polymerization. Human ear pinna was printed using extrusion method and computer-aided design, stereolithography software which facilitated the automated printing in relatively less time without continuous monitoring. Thermal degradation of pinna was checked by thermal gravimetric analysis. Biodegradability and swelling of ear pinna were observed for understanding the nature of pinna and the impact of external factors. Reconstructed pinna's biocompatibility was proved byin ovoandin vivostudies. The occurrence of angiogenesis in the grafted ear manifested the capacity of proliferation and engraftment of cartilage cells. Histology and SEM analysis revealed the recellularization and the synthesis of ECM components such as glycosaminoglycan and collagen in transplanted 3D printed ear pinna. The expression of CD90+ which indicated newly synthesized cartilage in the transplanted 3D printed ear pinna. The absence expression of CD14+ also indicated acceptance of xenogenic transplanted 3D printed ear pinna. Transplantation of 3D ear pinna was successful in an animal model and can be utilized as tissue engineered ear bank.


Assuntos
Bioimpressão/métodos , Pavilhão Auricular , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Pavilhão Auricular/citologia , Pavilhão Auricular/metabolismo , Matriz Extracelular/química , Cabras , Humanos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA