Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987758

RESUMO

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Assuntos
Asma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Camundongos , Alérgenos , Colágeno , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ret/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L149-L163, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084408

RESUMO

With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.


Assuntos
Asma , Receptores Nicotínicos , Transtornos Respiratórios , Humanos , Receptores Nicotínicos/metabolismo , Nicotina/efeitos adversos , Nicotina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Pulmão/metabolismo , Asma/metabolismo , Transtornos Respiratórios/metabolismo , Produtos do Tabaco
3.
Allergy ; 79(7): 1831-1843, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38686450

RESUMO

BACKGROUND: The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES: To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS: Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS: ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS: In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.


Assuntos
Corticosteroides , Voluntários Saudáveis , Humanos , Adulto , Masculino , Administração por Inalação , Feminino , Corticosteroides/administração & dosagem , Adulto Jovem , Pessoa de Meia-Idade , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/efeitos dos fármacos , Fluticasona/administração & dosagem , Fluticasona/farmacologia
4.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L542-L551, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697925

RESUMO

The use of respiratory support strategies such as continuous positive airway pressure in premature infants can substantially stretch highly compliant perinatal airways, leading to airway hyperreactivity and remodeling in the long term. The mechanisms by which stretch detrimentally affects the airway are unknown. Airway smooth muscle cells play a critical role in contractility and remodeling. Using 18-22-wk gestation human fetal airway smooth muscle (fASM) as an in vitro model, we tested the hypothesis that mechanosensitive Piezo (PZ) channels contribute to stretch effects. We found that PZ1 and PZ2 channels are expressed in the smooth muscle of developing airways and that their expression is influenced by stretch. PZ activation via agonist Yoda1 or stretch results in significant [Ca2+]i responses as well as increased extracellular matrix production. These data suggest that functional PZ channels may play a role in detrimental stretch-induced airway changes in the context of prematurity.NEW & NOTEWORTHY Piezo channels were first described just over a decade ago and their function in the lung is largely unknown. We found that piezo channels are present and functional in the developing airway and contribute to intracellular calcium responses and extracellular matrix remodeling in the setting of stretch. This may improve our understanding of the mechanisms behind development of chronic airway diseases, such as asthma, in former preterm infants exposed to respiratory support, such as continuous positive airway pressure (CPAP).


Assuntos
Asma , Recém-Nascido Prematuro , Humanos , Recém-Nascido , Músculo Liso/metabolismo , Pulmão/metabolismo , Asma/metabolismo , Miócitos de Músculo Liso/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L17-L29, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192375

RESUMO

Although nicotinic acetylcholine receptors (nAChRs) are commonly associated with neurons in the brain and periphery, recent data indicate that they are also expressed in non-neuronal tissues. We recently found the alpha7 (α7nAChR) subunit is highly expressed in human airway smooth muscle (hASM) with substantial increase in asthmatics, but their functionality remains unknown. We investigated the location and functional role of α7nAChRs in hASM cells from normal versus mild-moderate asthmatic patients. Immunostaining and protein analyses showed α7nAChR in the plasma membrane including in asthmatics. In asthmatic hASM, patch-clamp recordings revealed significantly higher functional homomeric α7nAChR channels. Real-time fluorescence imaging showed nicotine, via α7nAChR, increases intracellular Ca2+ ([Ca2+]i) independent of ACh effects, particularly in asthmatic hASM, while cellular traction force microscopy showed nicotine-induced contractility including in asthmatics. These results indicate functional homomeric and heteromeric nAChRs that are increased in asthmatic hASM, with pharmacology that likely differ owing to different subunit interfaces that form the orthosteric sites. nAChRs may represent a novel target in alleviating airway hyperresponsiveness in asthma.NEW & NOTEWORTHY Cigarette smoking and vaping exacerbate asthma. Understanding the mechanisms of nicotine effects in asthmatic airways is important. This study demonstrates that functional alpha7 nicotinic acetylcholine receptors (α7nAChRs) are expressed in human airway smooth muscle, including from asthmatics, and enhance intracellular calcium and contractility. Although a7nAChRs are associated with neuronal pathways, α7nAChR in smooth muscle suggests inhaled nicotine (e.g., vaping) can directly influence airway contractility. Targeting α7nAChR may represent a novel approach to alleviating airway hyperresponsiveness in asthma.


Assuntos
Asma , Receptores Nicotínicos , Humanos , Receptor Nicotínico de Acetilcolina alfa7 , Nicotina/farmacologia , Cálcio/metabolismo , Asma/metabolismo , Receptores Nicotínicos/metabolismo , Músculo Liso/metabolismo
6.
J Allergy Clin Immunol ; 150(4): 830-840, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35537502

RESUMO

BACKGROUND: Understanding how asthma biomarkers relate to gene expression signatures could help identify drivers of pathogenesis. OBJECTIVE: This post hoc exploratory analysis of the phase II tralokinumab trial MESOS (ClinicalTrials.gov identifier NCT02449473) aimed to profile baseline airway inflammation in patients with moderate-to-severe asthma. METHODS: The T2 and T17 gene expression signatures, 3-gene mean and 5-gene mean, were calculated through transcriptomic analysis of baseline bronchial brushing samples. Clustering analysis using these signatures identified 3 distinct inflammatory subgroups: T2LOW/T17HIGH (n = 33), T2HIGH/T17LOW (n = 10), and T2LOW/T17LOW (n = 27). RESULTS: Fractional exhaled nitric oxide (Feno) levels were highest for T2HIGH/T17LOW and lowest for T2LOW/T17HIGH (median = 52.0 [range 42.5-116.3] and median = 18.8 [range 6.6-128.6] ppb, respectively; P = .003). High Feno levels were strongly correlated with high T2 gene expression (Spearman ρ = 0.5537; P < .001). Individual genes differentially expressed in patients with elevated levels of Feno, blood and bronchial submucosal eosinophil counts, and IgE level were explored, with cystatin SN (CST1) being the most upregulated gene in all subgroups (4.49- to 34.42-fold upregulation across clinically defined subgroups with high biomarker expression). CONCLUSION: Feno level may be useful to differentiate patients with T2 or T17 gene expression. Elevated Feno levels are associated with high CST1 expression.


Assuntos
Asma , Eosinófilos , Asma/metabolismo , Biomarcadores/análise , Testes Respiratórios , Brônquios/metabolismo , Eosinófilos/metabolismo , Expiração , Expressão Gênica , Humanos , Imunoglobulina E , Óxido Nítrico/metabolismo , Cistatinas Salivares
7.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L558-L568, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166734

RESUMO

Senescent cells can drive age-related tissue dysfunction partially via a senescence-associated secretory phenotype (SASP) involving proinflammatory and profibrotic factors. Cellular senescence has been associated with a structural and functional decline during normal lung aging and age-related diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Asthma in the elderly (AIE) represents a major healthcare burden. AIE is associated with bronchial airway hyperresponsiveness and remodeling, which involves increased cell proliferation and higher rates of fibrosis, and resistant to standard therapy. Airway smooth muscle (ASM) cells play a major role in asthma such as remodeling via modulation of inflammation and the extracellular matrix (ECM) environment. Whether senescent ASM cells accumulate in AIE and contribute to airway structural or functional changes is unknown. Lung tissues from elderly persons with asthma showed greater airway fibrosis compared with age-matched elderly persons with nonasthma and young age controls. Lung tissue or isolated ASM cells from elderly persons with asthma showed increased expression of multiple senescent markers including phospho-p53, p21, telomere-associated foci (TAF), as well as multiple SASP components. Senescence and SASP components were also increased with aging per se. These data highlight the presence of cellular senescence in AIE that may contribute to airway remodeling.


Assuntos
Asma , Senescência Celular , Humanos , Asma/patologia , Remodelação das Vias Aéreas/fisiologia , Miócitos de Músculo Liso/metabolismo , Pulmão/metabolismo , Fibrose , Biomarcadores/metabolismo
8.
Allergy ; 77(10): 2974-2986, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35579040

RESUMO

BACKGROUND: The most recognizable phenotype of severe asthma comprises people who are blood eosinophil and FeNO-high, driven by type 2 (T2) cytokine biology, which responds to targeted biological therapies. However, in many people with severe asthma, these T2 biomarkers are suppressed but poorly controlled asthma persists. The mechanisms driving asthma in the absence of T2 biology are poorly understood. OBJECTIVES: To explore airway pathology in T2 biomarker-high and -low severe asthma. METHODS: T2 biomarker-high severe asthma (T2-high, n = 17) was compared with biomarker-intermediate (T2-intermediate, n = 21) and biomarker-low (T2-low, n = 20) severe asthma and healthy controls (n = 28). Bronchoscopy samples were processed for immunohistochemistry, and sputum for cytokines, PGD2 and LTE4 measurements. RESULTS: Tissue eosinophil, neutrophil and mast cell counts were similar across severe asthma phenotypes and not increased when compared to healthy controls. In contrast, the remodelling features of airway smooth muscle mass and MUC5AC expression were increased in all asthma groups compared with health, but similar across asthma subgroups. Submucosal glands were increased in T2-intermediate and T2-low asthma. In spite of similar tissue cellular inflammation, sputum IL-4, IL-5 and CCL26 were increased in T2-high versus T2-low asthma, and several further T2-associated cytokines, PGD2 and LTE4 , were increased in T2-high and T2-intermediate asthma compared with healthy controls. CONCLUSIONS: Eosinophilic tissue inflammation within proximal airways is suppressed in T2 biomarker-high and T2-low severe asthma, but inflammatory and structural cell activation is present, with sputum T2-associated cytokines highest in T2 biomarker-high patients. Airway remodelling persists and may be important for residual disease expression beyond eosinophilic exacerbations. Registered at ClincialTrials.gov: NCT02883530.


Assuntos
Asma , Eosinofilia , Remodelação das Vias Aéreas , Asma/metabolismo , Biomarcadores , Citocinas/análise , Eosinofilia/patologia , Eosinófilos/metabolismo , Humanos , Inflamação/patologia , Interleucina-4 , Interleucina-5/análise , Escarro
9.
Physiol Rep ; 12(13): e16122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942729

RESUMO

Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.


Assuntos
Fatores de Transcrição ARNTL , Animais Recém-Nascidos , Hiperóxia , Animais , Hiperóxia/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Camundongos , Feminino , Masculino , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caracteres Sexuais
10.
Expert Opin Ther Targets ; 27(1): 19-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744401

RESUMO

INTRODUCTION: Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED: Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION: ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.


Assuntos
Asma , Humanos , Sistema Respiratório , Músculo Liso , Remodelação das Vias Aéreas/fisiologia , Inflamação , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA