Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 105(9): 2664-2669, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33320044

RESUMO

The dagger nematode Xiphinema index has a major economic impact because of its transmission of Grapevine fanleaf virus to grapevines. This vector nematode, which was introduced into Western countries from the Middle East together with the domesticated grapevine, mostly reproduces by meiotic parthenogenesis, but microsatellite multilocus genotype (MLG) analysis has revealed the occurrence of rare sexual reproduction events in field conditions. In a previous 6-year study under controlled conditions, we evaluated the durability of resistance to X. index in accessions derived from a muscadine resistance source and reference accessions. In this previous study, we used an equal-proportion mixture of four lines (from Spain, Italy, Greece, and Iran) representative of X. index diversity as the inoculum, and we collected random samples in 3-, 4-, 5-, and 6-year-old vines. Here, we genotyped the individuals from these samples using the MLG technique, and we analyzed the changes in line frequency and the occurrence of sexual reproduction events between lines over time. The nematode lines differed in aggressiveness and hybrids between lines were detected at a low, but apparently increasing rate. Hybridization events were recovered in all accessions, regardless of resistance status and propagation type. Finally, our data provide the first evidence of sexual reproduction in the nematode X. index under controlled conditions.


Assuntos
Nematoides , Vitis , Animais , Resistência à Doença , Doenças das Plantas , Reprodução
2.
Phytopathology ; 110(9): 1565-1571, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32378451

RESUMO

Breeding for varieties carrying natural resistance (R) against plant-parasitic nematodes is a promising alternative to nematicide ban. In perennial crops, the long plant-nematode interaction increases the risk for R breaking and R durability is a real challenge. In grapevine, the nematode Xiphinema index has a high economic impact by transmitting Grapevine fanleaf virus (GFLV) and, to delay GFLV transmission, rootstocks resistant to this vector are being selected, using Muscadinia rotundifolia in particular as an R source. To optimize in fine this strategy, the durability has been studied under controlled conditions in F1 and BC1 muscadine-derived resistant accessions previously obtained from either hardwood-cutting or in vitro propagation. After inoculation with a mix, in equal proportions, of four lines representative of the X. index diversity, multiplication on plants has been monitored 3 to 6 years. The nematode reproduction factor remained lower than 1 in resistant plants obtained from hardwood cuttings while it increased at values far beyond 1 in resistant plants of in vitro origin. Data for nematode numbers per gram of roots mostly paralleled those obtained for the reproduction factor. The effect of the propagation type on resistance over years was also evaluated for the ratio female/juvenile and the frequency of males. Altogether our results illustrate that the muscadine-derived resistance based on hardwood cuttings is durable. By contrast, in resistant and reference accessions obtained from in vitro, our data suggest that the increased nematode multiplication might be mainly due to the modification of root architecture consecutive to this propagation method.


Assuntos
Nematoides , Vitis , Animais , Cruzamento , Vetores de Doenças , Feminino , Doenças das Plantas
3.
Phytopathology ; 103(8): 833-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23425239

RESUMO

Root-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown. The Ma plum resistance (R) gene, with a complete spectrum, and the RMia peach R gene, with a more restricted spectrum, both provide total control of Meloidogyne incognita, the model parthenogenetic species of the genus and the most important RKN in terms of economic losses. We investigated the durability of the resistance to this nematode conferred by these genes, comparing the results obtained with those for the tomato Mi-1 reference gene. In multiyear experiments, we applied a high and continuous nematode inoculum pressure by cultivating nematode-infested susceptible tomato plants with either Prunus accessions carrying Ma or RMia R genes, or with resistant tomato plants carrying the Mi-1 gene. Suitable conditions for Prunus development were achieved by carrying out the studies in a glasshouse, in controlled conditions allowing a short winter leaf fall and dormancy. We first assessed the plum accession 'P.2175', which is heterozygous for the Ma gene, in two successive 2-year evaluations, for resistance to two M. incognita isolates. Whatever the isolate used, no nematodes reproducing on P.2175 were detected, whereas galls and nematodes reproducing on tomato plants carrying Mi-1 were observed. In a second experiment with the most aggressive isolate, interspecific full-sib material (P.2175 × ['Garfi' almond × 'Nemared' peach]), carrying either Ma or RMia (from Nemared) or both (in the heterozygous state) or neither of these genes, was evaluated for 4 years. No virulent nematodes developed on Prunus spp. carrying R genes, whereas galling and virulent individuals were observed on Mi-1-resistant tomato plants. Thus, the resistance to M. incognita conferred by Ma in Prunus material in both a pure-plum and an interspecific genetic background, or by RMia in an interspecific background, appears to be durable, highlighting the value of these two genes for the creation of Prunus rootstock material.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Prunus/imunologia , Tylenchoidea/patogenicidade , Animais , Quimera , Marcadores Genéticos/genética , Genótipo , Heterozigoto , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/parasitologia , Fenótipo , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Prunus/genética , Prunus/parasitologia , Virulência
4.
Phytopathology ; 101(8): 945-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21446787

RESUMO

The Ma gene from Myrobalan plum is a TNL gene that confers a high-level resistance to all root-knot nematodes of major economic importance, including Meloidogyne incognita, M. javanica, M. arenaria, and M. enterolobii. The nematode behavior in the roots and the corresponding histological mechanisms of the Ma resistance to M. incognita in the resistant (R) accessions of the plum 'P.2175' and the interspecific hybrid P.2175×almond-peach '35', carrying the Ma1 allele (Ma1/ma), were characterized in comparison with the susceptible (S) accessions in the plum 'P.2032' and the interspecific hybrid P.2175×almond-peach '253' (ma/ma). Second-stage juveniles (J2s) were inoculated in micropropagated plantlets grown in soil substrate under controlled conditions at 25°C. Nematodes penetrated both R and S plants preferentially along the apical zone or close to the young lateral buds and moved via similar routes. Then they migrated into the cortex downward in the direction of the apex and turned up in the meristematic apical region to colonize the differentiating stele. In R accessions, motile J2s neither swelled nor developed into J3s, and initiation of feeding sites was never observed. This complete absence of gall symptoms is associated with cell necroses and corresponding hypersensitive-like reaction (HLR) phenotypes occurring either in the stele or in the meristematic apical region or in the cortex. Nematode attacks often disorganized the meristematic apical tissues of R accessions, which induced the development of subterminal lateral roots replacing primary terminal apices and, thus, provided an active resistance reaction to HLR damage.


Assuntos
Prunus/genética , Prunus/parasitologia , Tylenchoidea/fisiologia , Animais , Interações Hospedeiro-Parasita , Raízes de Plantas/citologia , Raízes de Plantas/parasitologia , Prunus/imunologia , Tylenchoidea/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA