RESUMO
Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.
Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de SinaisRESUMO
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
Assuntos
Imunomodulação , Células Mieloides , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Humanos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Dendríticas/imunologia , Transcriptoma , Células Cultivadas , Camundongos Knockout , Regulação da Expressão Gênica , Lisados BacterianosRESUMO
MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.
Assuntos
Interleucina-15 , Células Matadoras Naturais , Animais , Humanos , Camundongos , Citocinas/metabolismo , Regulação da Expressão Gênica , Interleucina-15/genética , Interleucina-15/metabolismo , Transdução de SinaisRESUMO
Oral bacterial lysates (OBLs) can reduce the frequency and severity of recurrent respiratory tract infections in children from viral and bacterial origins. OBL-induced early innate immune reaction was already shown, but the specific features of different OBLs have never been studied and compared. A study was conducted to assess in vitro the protective effects on rhinovirus- (RV-) infected human bronchial epithelial cells (BECs) of two slightly different OBLs: OM-85 and Pulmonarom. Furthermore, since immune cells represent the key arm for antiviral defence, the capacity of these OBLs to induce selected cytokine production in mouse bone marrow-derived DCs (BMDCs) was also evaluated. Although different OBLs may share some mechanisms to protect host cells from virus infection, some product-specific antimicrobial activities were observed on RV-infected human BECs and mouse BMDCs. These results are consistent with a product-specific response possibly triggered by different pathogen-associated molecular patterns (PAMPs) contained in OBLs.
Assuntos
Antivirais , Rhinovirus , Animais , Extratos Celulares , Células Epiteliais , CamundongosRESUMO
BTN3A molecules-BTN3A1 in particular-emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity.
RESUMO
Gouty arthritis results from the generation of monosodium urate (MSU) crystals within joints. These MSU crystals elicit acute inflammation characterized by massive infiltration of neutrophils and monocytes that are mobilized by the pro-inflammatory cytokine IL-1ß. MSU crystals also activate the complement system, which regulates the inflammatory response; however, it is unclear whether or how MSU-mediated complement activation is linked to IL-1ß release in vivo, and the various roles that might be played by individual components of the complement cascade. Here we show that exposure to MSU crystals in vivo triggers the complement cascade, leading to the generation of the biologically active complement proteins C3a and C5a. C5a, but not C3a, potentiated IL-1ß and IL-1α release from LPS-primed MSU-exposed peritoneal macrophages and human monocytic cells in vitro; while in vivo MSU-induced C5a mediated murine neutrophil recruitment as well as IL-1ß production at the site of inflammation. These effects were significantly ameliorated by treatment of mice with a C5a receptor antagonist. Mechanistic studies revealed that C5a most likely increased NLRP3 inflammasome activation via production of reactive oxygen species (ROS), and not through increased transcription of inflammasome components. Therefore we conclude that C5a generated upon MSU-induced complement activation increases neutrophil recruitment in vivo by promoting IL-1 production via the generation of ROS, which activate the NLRP3 inflammasome. Identification of the C5a receptor as a key determinant of IL-1-mediated recruitment of inflammatory cells provides a novel potential target for therapeutic intervention to mitigate gouty arthritis.