Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Hum Mol Genet ; 32(15): 2422-2440, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37129502

RESUMO

The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , DNA Mitocondrial/genética , Imunidade Inata/genética , Interferons , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
2.
J Biol Chem ; 298(10): 102420, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030054

RESUMO

TOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells. Consistent with these TOP1MT variants contributing to the patient phenotype, our comprehensive characterization suggests that both variants had impaired activity. Critically, we determined neither variant was able to restore steady state levels of mitochondrial-encoded proteins nor to rescue oxidative phosphorylation when re-expressed in TOP1MT KO cells. However, we found the two variants behaved differently in some respects; while the V1 variant was more efficient in restoring transcript levels, the V2 variant showed better rescue of mtDNA copy number and replication. These findings suggest that the different TOP1MT variants affect distinct TOP1MT functions. Altogether, these findings begin to provide insight into the many roles that TOP1MT plays in the maintenance and expression of the mitochondrial genome and how impairments in this important protein may lead to human pathology.


Assuntos
Cardiomiopatia Hipertrófica , DNA Topoisomerases Tipo I , Genoma Mitocondrial , Mitocôndrias , Humanos , Recém-Nascido , Cardiomiopatia Hipertrófica/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/metabolismo , Variação Genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Genet Med ; 25(6): 100314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305855

RESUMO

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Assuntos
Falência Hepática Aguda , Falência Hepática , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Acetilcisteína/uso terapêutico , Falência Hepática/tratamento farmacológico , Falência Hepática/genética , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/genética , Proteínas Mitocondriais/genética , Mutação , Estudos Retrospectivos , tRNA Metiltransferases/genética
4.
J Inherit Metab Dis ; 45(2): 366-376, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34580891

RESUMO

The dilated cardiomyopathy with ataxia syndrome (DCMA) is an autosomal recessive mitochondrial disease caused by mutations in the DnaJ heat shock protein family (Hsp40) member C19 (DNAJC19) gene. DCMA or 3-methylglutaconic aciduria type V is globally rare, but the largest number of patients in the world is found in the Hutterite population of southern Alberta in Canada. We provide an update on phenotypic findings, natural history, pathological findings, and our clinical experience. We analyzed all available records for 43 patients diagnosed with DCMA between 2005 and 2015 at the Alberta Children's Hospital. All patients studied were Hutterite and homozygous for the causative DNAJC19 variant (c.130-1G>C, IVS3-1G>C) and had elevated levels of 3-methyglutaconic acid. We calculated a birth prevalence of 1.54 cases per 1000 total births in the Hutterite community. Children were small for gestational age at birth and frequently required supplemental nutrition (63%) or surgical placement of a gastrostomy tube (35%). Early mortality in this cohort was high (40%) at a median age of 13 months (range 4-294 months). Congenital anomalies were common as was dilated cardiomyopathy (50%), QT interval prolongation (83%), and developmental delay (95%). Tissue pathology was analyzed in a limited number of patients and demonstrated subendocardial fibrosis in the heart, macrovesicular steatosis and fibrosis in the liver, and structural abnormalities in mitochondria. This report provides clinical details for a cohort of children with DCMA and the first presentation of tissue pathology for this disorder. Despite sharing common genetic etiology and environment, the disease is highly heterogeneous for reasons that are not understood. DCMA is a clinically heterogeneous systemic mitochondrial disease with significant morbidity and mortality that is common in the Hutterite population of southern Alberta.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Ataxia/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Ataxia Cerebelar , Fibrose , Humanos , Erros Inatos do Metabolismo , Doenças Mitocondriais/complicações , Fenótipo , Síndrome
5.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328774

RESUMO

Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.


Assuntos
Cardiomiopatias , Proteínas Mitocondriais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteostase
6.
Mol Genet Metab ; 131(1-2): 66-82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32980267

RESUMO

Mitochondrial diseases, due to nuclear or mitochondrial genome mutations causing mitochondrial dysfunction, have a wide range of clinical features involving neurologic, muscular, cardiac, hepatic, visual, and auditory symptoms. Making a diagnosis of a mitochondrial disease is often challenging since there is no gold standard and traditional testing methods have required tissue biopsy which presents technical challenges and most patients prefer a non-invasive approach. Since a diagnosis invariably involves finding a disease-causing DNA variant, new approaches such as next generation sequencing (NGS) have the potential to make it easier to make a diagnosis. We evaluated the ability of our traditional diagnostic pathway (metabolite analysis, tissue neuropathology and respiratory chain enzyme activity) in 390 patients. The traditional diagnostic pathway provided a diagnosis of mitochondrial disease in 115 patients (29.50%). Analysis of mtDNA, tissue neuropathology, skin electron microscopy, respiratory chain enzyme analysis using inhibitor assays, blue native polyacrylamide gel electrophoresis were all statistically significant in distinguishing patients between a mitochondrial and non-mitochondrial diagnosis. From these 390 patients who underwent traditional analysis, we recruited 116 patients for the NGS part of the study (36 patients who had a mitochondrial diagnosis (MITO) and 80 patients who had no diagnosis (No-Dx)). In the group of 36 MITO patients, nuclear whole exome sequencing (nWES) provided a second diagnosis in 2 cases who already had a pathogenic variant in mtDNA, and a revised diagnosis (GLUL) in one case that had abnormal pathology but no pathogenic mtDNA variant. In the 80 NO-Dx patients, nWES found non-mitochondrial diagnosis in 26 patients and a mitochondrial diagnosis in 1 patient. A genetic diagnosis was obtained in 53/116 (45.70%) cases that were recruited for NGS, but not in 11/116 (9.48%) of cases with abnormal mitochondrial neuropathology. Our results show that a non-invasive, bigenomic sequencing (BGS) approach (using both a nWES and optimized mtDNA analysis to include large deletions) should be the first step in investigating for mitochondrial diseases. There may still be a role for tissue biopsy in unsolved cases or when the diagnosis is still not clear after NGS studies.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mutação , Análise de Sequência de DNA
7.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171986

RESUMO

Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.


Assuntos
Osso e Ossos/metabolismo , Doenças Mitocondriais/metabolismo , Esqueleto/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Fenótipo , Transporte Proteico , Proteostase , Esqueleto/fisiologia
8.
Can J Neurol Sci ; 46(6): 717-726, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31387656

RESUMO

BACKGROUND: An improved understanding of diagnostic and treatment practices for patients with rare primary mitochondrial disorders can support benchmarking against guidelines and establish priorities for evaluative research. We aimed to describe physician care for patients with mitochondrial diseases in Canada, including variation in care. METHODS: We conducted a cross-sectional survey of Canadian physicians involved in the diagnosis and/or ongoing care of patients with mitochondrial diseases. We used snowball sampling to identify potentially eligible participants, who were contacted by mail up to five times and invited to complete a questionnaire by mail or internet. The questionnaire addressed: personal experience in providing care for mitochondrial disorders; diagnostic and treatment practices; challenges in accessing tests or treatments; and views regarding research priorities. RESULTS: We received 58 survey responses (52% response rate). Most respondents (83%) reported spending 20% or less of their clinical practice time caring for patients with mitochondrial disorders. We identified important variation in diagnostic care, although assessments frequently reported as diagnostically helpful (e.g., brain magnetic resonance imaging, MRI/MR spectroscopy) were also recommended in published guidelines. Approximately half (49%) of participants would recommend "mitochondrial cocktails" for all or most patients, but we identified variation in responses regarding specific vitamins and cofactors. A majority of physicians recommended studies on the development of effective therapies as the top research priority. CONCLUSIONS: While Canadian physicians' views about diagnostic care and disease management are aligned with published recommendations, important variations in care reflect persistent areas of uncertainty and a need for empirical evidence to support and update standard protocols.


Les soins de santé prodigués au Canada à des individus atteints de troubles mitochondriaux : une enquête menée auprès de médecins. Contexte: Dans le cas de patients atteints de troubles mitochondriaux rares, il est permis de croire qu'une meilleure compréhension des pratiques en matière de diagnostic et de traitement peut contribuer, au moyen des lignes directrices, à l'étalonnage et à l'établissement de priorités en ce qui regarde la recherche évaluative. Notre intention a été de décrire les soins prodigués au Canada par des médecins, notamment leur variabilité, dans le cas de ces patients. Méthodes: Pour ce faire, nous avons effectué une enquête transversale auprès de médecins canadiens qui posent des diagnostics de troubles mitochondriaux et qui prodiguent des soins continus aux patients qui en sont atteints. À cet effet, nous avons fait appel à la méthode d'enquête dite « en boule de neige ¼ (snowball sampling) afin d'identifier des participants possiblement admissibles. Ces derniers ont été ensuite contactés par la poste, et ce, à cinq reprises au maximum. Ils ont été invités à remplir un questionnaire et à le retourner par la poste ou en ligne. Ce questionnaire abordait les aspects suivants : leur expérience personnelle à titre de prestataire de soins ; leurs pratiques en matière de diagnostic et de traitement ; les défis se présentant à eux au moment d'avoir accès à des tests ou à des traitements ; et finalement leurs points de vue en ce qui regarde les priorités de la recherche. Résultats: Dans le cadre de cette enquête, nous avons reçu 58 réponses, ce qui représente un taux de 52 %. Une majorité de répondants (83 %) ont indiqué allouer 20 % ou moins de leur temps de pratique clinique aux soins de patients atteints de ces troubles. Nous avons également noté d'importantes variations concernant les soins et les diagnostics, et ce, même si les outils d'évaluation fréquemment considérés utiles sur le plan diagnostic (p. ex. : des IRM du cerveau/la spectroscopie par RM) étaient également recommandés dans des lignes directrices déjà publiées. Environ la moitié de nos répondants (49 %) recommanderaient volontiers un « cocktail ¼ de vitamines pour tous leurs patients ou la plupart d'entre eux. Quand il est question de vitamines spécifiques et de cofacteurs, nous avons cependant identifié une variation dans leurs réponses. Interrogés quant à la priorité numéro un en matière de recherche, une majorité de répondants a dit recommander la poursuite d'études portant sur la mise sur pied de traitements thérapeutiques efficaces. Conclusions: Bien que les points de vue de ces médecins canadiens en ce qui regarde les diagnostics et la prise en charge des troubles mitochondriaux soient en phase avec des recommandations publiées, d'importantes variations reflètent la persistance d'aspects incertains ainsi qu'un besoin de données empiriques afin de renforcer et de mettre à jour les protocoles de rééférence.


Assuntos
Encéfalo/diagnóstico por imagem , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Padrões de Prática Médica , Estudos Transversais , Pesquisas sobre Atenção à Saúde , Humanos , Imageamento por Ressonância Magnética , Doenças Mitocondriais/diagnóstico por imagem , Neuroimagem
9.
J Med Genet ; 55(5): 351-358, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437868

RESUMO

BACKGROUND: Two recombinant enzymes (agalsidase alfa 0.2 mg/kg/every other week and agalsidase beta 1.0 mg/kg/every other week) have been registered for the treatment of Fabry disease (FD), at equal high costs. An independent international initiative compared clinical and biochemical outcomes of the two enzymes. METHODS: In this multicentre retrospective cohort study, clinical event rate, left ventricular mass index (LVMI), estimated glomerular filtration rate (eGFR), antibody formation and globotriaosylsphingosine (lysoGb3) levels were compared between patients with FD treated with agalsidase alfa and beta at their registered dose after correction for phenotype and sex. RESULTS: 387 patients (192 women) were included, 248 patients received agalsidase alfa. Mean age at start of enzyme replacement therapy was 46 (±15) years. Propensity score matched analysis revealed a similar event rate for both enzymes (HR 0.96, P=0.87). The decrease in plasma lysoGb3 was more robust following treatment with agalsidase beta, specifically in men with classical FD (ß: -18 nmol/L, P<0.001), persisting in the presence of antibodies. The risk to develop antibodies was higher for patients treated with agalsidase beta (OR 2.8, P=0.04). LVMI decreased in a higher proportion following the first year of agalsidase beta treatment (OR 2.27, P=0.03), while eGFR slopes were similar. CONCLUSIONS: Treatment with agalsidase beta at higher dose compared with agalsidase alfa does not result in a difference in clinical events, which occurred especially in those with more advanced disease. A greater biochemical response, also in the presence of antibodies, and better reduction in left ventricular mass was observed with agalsidase beta.


Assuntos
Doença de Fabry/tratamento farmacológico , Isoenzimas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , alfa-Galactosidase/administração & dosagem , Adulto , Estudos de Coortes , Terapia de Reposição de Enzimas , Doença de Fabry/genética , Doença de Fabry/patologia , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Isoenzimas/genética , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/genética , Estudos Retrospectivos , Resultado do Tratamento , alfa-Galactosidase/genética
11.
Mol Genet Metab ; 125(4): 332-337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361042

RESUMO

BACKGROUND: Mitochondrial diseases are a clinically heterogeneous group of diseases caused by mutations in either nuclear or mitochondrial DNA (mtDNA). The diagnosis is challenging and has frequently required a tissue biopsy to obtain a sufficient quantity of mtDNA. Less-invasive sources mtDNA, such as peripheral blood leukocytes, urine sediment, or buccal swab, contain a lower quantity of mtDNA compared to tissue sources which may reduce sensitivity. Cellular apoptosis of tissues and hematopoetic cells releases fragments of DNA and mtDNA into the circulation and these molecules can be extracted from plasma as cell-free DNA (cfDNA). However, entire mtDNA has not been successfully identified from the cell free fraction previously. We hypothesized that the circular nature of mtDNA would prevent its degradation and a higher sensitivity method, such as next generation sequencing, could identify intact cf-mtDNA from human plasma. METHODS: Plasma was obtained from patients with mitochondrial disease diagnosed from skeletal muscle biopsy (n = 7) and healthy controls (n = 7) using a specially cfDNA collection tube (Streck Inc.; La Vista, NE). To demonstrate the presence of mtDNA within these samples, we amplified the isolated DNA using custom PCR primers specific to overlapping fragments of mtDNA. cfDNA samples were then sequenced using the Illumina MiSeq sequencing platform. RESULTS: We confirmed the presence of mtDNA, demonstrating that the full mitochondrial genome is in fact present within the cell-free plasma fraction of human blood. Sequencing identified the mitochondrial haplogroup matching with the tissue specimen for all patients. CONCLUSION: We report the existence of full length mtDNA in cell-free human plasma that was successfully used to perform haplogroup matching. Clinical applications for this work include patient monitoring for heteroplasmy status after mitochondrially-targeted therapies or haplogroup monitoring as a measure of stem cell transplantation.


Assuntos
Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Cell Mol Med ; 21(10): 2329-2343, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28409910

RESUMO

Primary ubiquinone (co-enzyme Q) deficiency results in a wide range of clinical features due to mitochondrial dysfunction. Here, we analyse and characterize two mutations in the ubiquinone biosynthetic gene COQ7. One mutation from the only previously identified patient (V141E), and one (L111P) from a 6-year-old girl who presents with spasticity and bilateral sensorineural hearing loss. We used patient fibroblast cell lines and a heterologous expression system to show that both mutations lead to loss of protein stability and decreased levels of ubiquinone that correlate with the severity of mitochondrial dysfunction. The severity of L111P is enhanced by the particular COQ7 polymorphism (T103M) that the patient carries, but not by a mitochondrial DNA mutation (A1555G) that is also present in the patient and that has been linked to aminoglycoside-dependent hearing loss. We analysed treatment with the unnatural biosynthesis precursor 2,4-dihydroxybenzoate (DHB), which can restore ubiquinone synthesis in cells completely lacking the enzymatic activity of COQ7. We find that the treatment is not beneficial for every COQ7 mutation and its outcome depends on the extent of enzyme activity loss.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Fibroblastos/efeitos dos fármacos , Perda Auditiva/genética , Hidroxibenzoatos/farmacologia , Oxigenases de Função Mista/genética , Paraplegia Espástica Hereditária/genética , Ubiquinona/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Criança , Consanguinidade , Sistema Enzimático do Citocromo P-450/metabolismo , Análise Mutacional de DNA , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/metabolismo , Mutação , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2274-2281, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28502704

RESUMO

BACKGROUND: Protein O-linked-ß-N-acetyl glucosamine (O-GlcNAc) is a post-translational modification to Ser/Thr residues that integrates energy supply with demand. Abnormal O-GlcNAc patterning is evident in several neurological disease states including epilepsy, Alzheimer's disease and autism spectrum disorder (ASD). A potential treatment option for these disorders includes the high-fat, low-carbohydrate, ketogenic diet (KD). The goal of this study was to determine whether the KD induces changes in O-GlcNAc in the BTBRT+tf/j (BTBR) mouse model of ASD. METHODS: Juvenile male (5weeks), age-matched C57 or BTBR mice consumed a chow diet (13% kcal fat) or KD (75% kcal fat) for 10-14days. Following these diets, brain (prefrontal cortex) and liver were examined for gene expression levels of key O-GlcNAc mediators, global and protein specific O-GlcNAc as well as indicators of energy status. RESULTS: The KD reduced global O-GlcNAc in the livers of all animals (p<0.05). Reductions were likely mediated by lower protein levels of O-GlcNAc transferase (OGT) and increased O-GlcNAcase (OGA) (p<0.05). In contrast, no differences in global O-GlcNAc were noted in the brain (p>0.05), yet OGT and OGA expression (mRNA) were elevated in both C57 and BTBR animals (p<0.05). CONCLUSIONS: The KD has tissue specific impacts on O-GlcNAc. Although levels of O-GlcNAc play an important role in neurodevelopment, levels of this modification in the juvenile mouse brain were stable with the KD despite large fluctuations in energy status. This suggests that it is unlikely that the KD exerts it therapeutic benefit in the BTBR model of ASD by O-GlcNAc related pathways.


Assuntos
Acetilglucosamina/metabolismo , Transtorno Autístico/metabolismo , Dieta Cetogênica , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Processamento de Proteína Pós-Traducional , Acetilglucosamina/genética , Animais , Transtorno Autístico/genética , Transtorno Autístico/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/patologia
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 386-394, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27915031

RESUMO

Acid Ceramidase Deficiency (Farber disease, FD) is an ultra-rare Lysosomal Storage Disorder that is poorly understood and often misdiagnosed as Juvenile Idiopathic Arthritis (JIA). Hallmarks of FD are accumulation of ceramides, widespread macrophage infiltration, splenomegaly, and lymphocytosis. The cytokines involved in this abnormal hematopoietic state are unknown. There are dozens of ceramide species and derivatives, but the specific ones that accumulate in FD have not been investigated. We used a multiplex assay to analyze cytokines and mass spectrometry to analyze ceramides in plasma from patients and mice with FD, controls, Farber patients treated by hematopoietic stem cell transplantation (HSCT), JIA patients, and patients with Gaucher disease. KC, MIP-1α, and MCP-1 were sequentially upregulated in plasma from FD mice. MCP-1, IL-10, IL-6, IL-12, and VEGF levels were elevated in plasma from Farber patients but not in control or JIA patients. C16-Ceramide (C16-Cer) and dhC16-Cer were upregulated in plasma from FD mice. a-OH-C18-Cer, dhC12-Cer, dhC24:1-Cer, and C22:1-Cer-1P accumulated in plasma from patients with FD. Most cytokines and only a-OH-C18-Cer returned to baseline levels in HSCT-treated Farber patients. Sphingosines were not altered. Chitotriosidase activity was also relatively low. A unique cytokine and ceramide profile was seen in the plasma of Farber patients that was not observed in plasma from HSCT-treated Farber patients, JIA patients, or Gaucher patients. The cytokine profile can potentially be used to prevent misdiagnosis of Farber as JIA and to monitor the response to treatment. Further understanding of why these signaling molecules and lipids are elevated can lead to better understanding of the etiology and pathophysiology of FD and inform development of future treatments.


Assuntos
Ceramidas/sangue , Citocinas/sangue , Lipogranulomatose de Farber/sangue , Animais , Artrite Juvenil/sangue , Transplante de Medula Óssea , Lipogranulomatose de Farber/terapia , Feminino , Hexosaminidases/sangue , Humanos , Masculino , Camundongos
15.
Am J Hematol ; 92(9): 929-939, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28569047

RESUMO

This study tests the hypothesis that the prevalence of severe clinical manifestations in Gaucher disease type 1 (GD1) patients at the time of treatment initiation has changed since alglucerase/imiglucerase enzyme replacement therapy (ERT) was approved in the United States (US) in 1991. US alglucerase/imiglucerase-treated GD1 patients from the International Collaborative Gaucher Group Gaucher Registry clinicaltrials.gov NCT00358943 were stratified by age at ERT initiation (<18, 18 to <50, ≥50 years), era of ERT initiation (1991-1995, 1996-2000, 2001-2005, 2006-2009), and splenectomy status pre-ERT. Prevalence of splenectomy decreased dramatically across the eras among all age groups. Bone manifestations were more prevalent in splenectomized patients than non-splenectomized patients in all age groups. Prevalence of bone manifestations differed across eras in certain age groups: non-splenectomized patients had a lower prevalence of ischemic bone events (pediatric patients) and bone crisis (pediatric patients and adults 18 to <50 years) in later eras; splenectomized adult (18 to <50 years) patients had a lower prevalence of ischemic bone events and bone crisis in later eras. Over two decades after the introduction of ERT, the prevalence of splenectomy and associated skeletal complications has declined dramatically. Concomitantly, the interval between diagnosis and initiation of ERT has decreased, most strikingly in pediatric patients who have the most severe disease. Together, these findings suggest that since the introduction of alglucerase/imiglucerase ERT, optimal standard of care has become established in the US to prevent destructive complications of GD1.


Assuntos
Terapia de Reposição de Enzimas , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/uso terapêutico , Adolescente , Adulto , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Sistema de Registros , Esplenectomia
16.
Can J Neurol Sci ; 44(5): 469-474, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28862104

RESUMO

Research in human subjects is at the core of achieving improvements in health outcomes. For clinical trials, in addition to the peer review of the results before publication, it is equally important to consider whether the trial will be conducted in a manner that generates data of the highest quality and provides a measure of safety for the participating subjects. In Canada, there is no definitive legislation that governs the conduct of research involving human subjects, but a network of regulations at different levels does provide a framework for both principal investigators and sponsors. In this paper, we provide an overview of the federal, provincial and institutional legislation, guidelines and policies that will inform readers about the requirements for clinical trial research. This includes a review of the role of the Food and Drug Regulations under the Food and Drugs Act and the Tri-Council Policy Statement (TCPS2), an overview of provincial legislation across the country, and a focus on selected policies from institutional research ethics boards and public health agencies. Many researchers may find navigation through regulations frustrating, and there is a paucity of information that explains the interrelationship between the different regulatory agencies in Canada. Better understanding the process, we feel, will facilitate investigators interested in clinical trials and also enhance the long-term health of Canadians.


Assuntos
Estudos Clínicos como Assunto , Órgãos dos Sistemas de Saúde , Pesquisa , Canadá , Humanos , Consentimento Livre e Esclarecido , Medição de Risco , Estados Unidos
17.
Mol Genet Metab ; 117(1): 19-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597322

RESUMO

BACKGROUND: The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. METHODS: (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). RESULTS: The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. CONCLUSION: This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD.


Assuntos
Acetato de Sódio/farmacocinética , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Ureia/metabolismo , Administração Oral , Adolescente , Adulto , Isótopos de Carbono/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/metabolismo , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Traçadores Radioativos , Acetato de Sódio/administração & dosagem , Adulto Jovem
18.
Can J Neurol Sci ; 43(4): 472-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27055517

RESUMO

Pompe disease is a lysosomal storage disorder caused by a deficiency of the enzyme acid alpha-glucosidase. Patients have skeletal muscle and respiratory weakness with or without cardiomyopathy. The objective of our review was to systematically evaluate the quality of evidence from the literature to formulate evidence-based guidelines for the diagnosis and management of patients with Pompe disease. The literature review was conducted using published literature, clinical trials, cohort studies and systematic reviews. Cardinal treatment decisions produced seven management guidelines and were assigned a GRADE classification based on the quality of evidence in the published literature. In addition, six recommendations were made based on best clinical practices but with insufficient data to form a guideline. Studying outcomes in rare diseases is challenging due to the small number of patients, but this is in particular the reason why we believe that informed treatment decisions need to consider the quality of the evidence.


Assuntos
Gerenciamento Clínico , Prova Pericial/normas , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/terapia , Canadá , Prática Clínica Baseada em Evidências/métodos , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-36781206

RESUMO

Biallelic variants in the WFS1 gene are associated with Wolfram syndrome. However, recent publications document that heterozygous variants can lead to a variety of phenotypes, such as Wolfram-like syndrome or isolated features of Wolfram syndrome. In this case report, we present a male patient with a history of congenital cataracts and subjective complaints of muscle weakness. Clinical assessment demonstrated normal muscle strength, and genomic, biochemical, electrophysiologic, and muscle biopsy studies did not identify a potential cause of the proband's perceived muscle weakness. Whole-exome sequencing identified a novel de novo variant in the WFS1 gene (c.1243G > T), representing one of only several patients in the published literature with isolated congenital cataracts and a heterozygous WFS1 variant. The variety of phenotypes associated with heterozygous variants in WFS1 suggests that this gene should be considered as a cause of both dominant and biallelic/recessive forms of disease. Future research should focus on elucidating the mechanism(s) of disease and variable expressivity in WFS1 in order to improve our ability to provide patients and families with anticipatory guidance about the disease, including appropriate screening and medical interventions.


Assuntos
Catarata , Síndrome de Wolfram , Humanos , Masculino , Catarata/genética , Heterozigoto , Mutação , Linhagem , Fenótipo , Síndrome de Wolfram/genética , Síndrome de Wolfram/diagnóstico
20.
Curr Probl Cardiol ; 48(2): 101476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36328338

RESUMO

Given the inherent complexities of Fabry disease (FD) and evolving landscape of cardiovascular clinical management, there is no established ideal clinical care model for these patients. We identified clinical factors predictive of increased risk of major adverse cardiac events (MACE) in patients with FD targeted to improve clinical outcomes. Ninety-five patients studied over a median follow-up time of 6.3 years, and 26 patients reached the composite endpoint with a high prevalence of heart failure and cerebrovascular events and no cardiac-related mortality. Patients with MACE had worse health-related quality of life scores. Hypertrophy and presence of myocardial fibrosis increase risk of MACE by 4-5 times, and dyslipidemia increases risk of MACE by 3 times. Early Fabry-specific treatment and close monitoring of comorbidities reduce cardiac complications and mortality. These findings highlight the importance of comprehensive multidisciplinary management to help improve outcomes in FD patients.


Assuntos
Doença de Fabry , Cardiopatias , Insuficiência Cardíaca , Humanos , Doença de Fabry/complicações , Doença de Fabry/terapia , Doença de Fabry/epidemiologia , Qualidade de Vida , Imageamento por Ressonância Magnética , Insuficiência Cardíaca/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA