Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Chip ; 9(10): 1412-21, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19417908

RESUMO

Microfluidic devices were designed to perform on micromoles of biological macromolecules and viruses the search and the optimization of crystallization conditions by counter-diffusion, as well as the on-chip analysis of crystals by X-ray diffraction. Chips composed of microchannels were fabricated in poly-dimethylsiloxane (PDMS), poly-methyl-methacrylate (PMMA) and cyclo-olefin-copolymer (COC) by three distinct methods, namely replica casting, laser ablation and hot embossing. The geometry of the channels was chosen to ensure that crystallization occurs in a convection-free environment. The transparency of the materials is compatible with crystal growth monitoring by optical microscopy. The quality of the protein 3D structures derived from on-chip crystal analysis by X-ray diffraction using a synchrotron radiation was used to identify the most appropriate polymers. Altogether the results demonstrate that for a novel biomolecule, all steps from the initial search of crystallization conditions to X-ray diffraction data collection for 3D structure determination can be performed in a single chip.


Assuntos
Cristalografia por Raios X/instrumentação , Substâncias Macromoleculares/química , Técnicas Analíticas Microfluídicas/instrumentação , Cristalização , Dimetilpolisiloxanos/química , Polimetil Metacrilato/química
2.
Anal Bioanal Chem ; 385(8): 1362-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16773302

RESUMO

This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips, in particular for applications in which silicon is not the preferred material base. This review addresses applications and devices based on ablation using femtosecond lasers, infrared lasers as well as laser-induced micro-joining, and the laser-assisted generation of micro-replication tools, for subsequent replication of polymeric chips with a technique like laser LIGA.


Assuntos
Lasers/classificação , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Dióxido de Carbono , Luz , Polímeros , Raios Ultravioleta
3.
Anal Bioanal Chem ; 385(8): 1351-61, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16773304

RESUMO

This paper reviews applications of laser-based techniques to the fabrication of microfluidic devices for biochips and addresses some of the challenges associated with the manufacture of these devices. Special emphasis is placed on the use of lasers for the rapid prototyping and production of biochips in particular for applications in which silicon is not the preferred material base. Part I of this review addresses applications and devices using UV lasers for laser ablation and surface treatment of microchannels, in particular in polymers.


Assuntos
Lasers , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA