RESUMO
BACKGROUND: The family of proprotein convertases has been recently implicated in tumorigenesis and metastasis in animal models. However, these studies have not yet been completely corroborated in human tumors. METHODS: Using RT PCR, immunoblot and immunohistochemistry we assessed the presence and the processing patterns of the convertases PC1 and PC2 as well as the PC2 specific chaperone 7B2 in human liver metastases originating from colorectal cancer and compared them to unaffected and normal liver. Furthermore, we assessed the presence and processing profiles of PC1, PC2 and 7B2 in primary colon cancers. RESULTS: mRNA, protein expression, and protein cleavage profiles of proprotein convertases 1 and 2 are altered in liver colorectal metastasis, compared to unaffected and normal liver. Active PC1 protein is overexpressed in tumor, correlating with its mRNA profile. Moreover, the enhanced PC2 processing pattern in tumor correlates with the overexpression of its specific binding protein 7B2. These results were corroborated by immunohistochemistry. The specific and uniform convertase pattern observed in the metastases was present only in a fraction of primary colon cancers. CONCLUSION: The uniformly altered proprotein convertase profile in liver metastases is observed only in a fraction of primary colon cancers, suggesting possible selection processes involving PCs during metastasis as well as an active role of PCs in liver metastasis. In addition, the exclusive presence of 7B2 in metastatic tumors may represent a new target for early diagnosis, prognosis and/or treatment.
Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Pró-Proteína Convertase 1/biossíntese , Pró-Proteína Convertase 2/biossíntese , Neoplasias do Colo/metabolismo , Primers do DNA/química , Humanos , Immunoblotting , Imuno-Histoquímica , Modelos Biológicos , Metástase Neoplásica , Reação em Cadeia da Polimerase , Prognóstico , Ligação Proteica , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
High circulating cholesterol is associated with hypercholesterolemia, atherosclerosis, and stroke. However, the relation between cholesterol and tumorigenesis/metastasis is controversial. The proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low-density lipoprotein cholesterol homeostasis by targeting the low-density lipoprotein receptor (LDLR) for degradation. PCSK9 is mostly expressed in liver, which is one of the most common sites for metastatic disease. To reveal the function of PCSK9 and also evaluate the impact of cholesterol in liver metastasis development, B16F1 melanoma cells were injected into wild-type (WT) and Pcsk9(-/-) mice to induce liver metastasis. On chow diet, Pcsk9(-/-) mice harbored two-fold less liver metastases than WT mice. This decrease is related to low cholesterol levels in Pcsk9(-/-) mice, as the protection was lost after normalizing Pcsk9(-/-) cholesterol levels by a 2-week high cholesterol diet. Furthermore, a prolongation of this diet strongly increased metastasis in both genotypes, suggesting that high cholesterol levels promote metastatic progression. The protective effect of the PCSK9 deficiency is also associated with increased apoptosis in liver stroma and metastases. Tumor necrosis factor.α (TNFα) mRNA and protein were, respectively, higher in liver stroma and plasma of injected mice, likely increasing the apoptotic TNFα signaling. Furthermore, the anti-apoptotic factor B-cell lymphoma 2 was downregulated. TNFα regulation is LDLR-independent, as its mRNA level was similarly upregulated in mice lacking both PCSK9 and LDLR. Our findings show that PCSK9 deficiency reduces liver metastasis by its ability to lower cholesterol levels and by possibly enhancing TNFα-mediated apoptosis.