RESUMO
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.
Assuntos
Adenocarcinoma , Cnidários , Venenos de Cnidários , Neoplasias Pulmonares , Cifozoários , Animais , Humanos , Venenos de Cnidários/farmacologia , Venenos de Cnidários/química , Células A549 , Simulação de Acoplamento Molecular , Adenocarcinoma/tratamento farmacológico , Apoptose , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
Sea cucumber extracts and their bioactive compounds have the potential for stem cell proliferation induction and for their beneficial therapeutic properties. In this study, human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs) were exposed to an aqueous extract of Holothuria parva body walls. Proliferative molecules were detected using gas chromatography-mass spectrometry (GC-MS) analysis in an aqueous extract of H. parva. The aqueous extract concentrations of 5, 10, 20, 40, and 80 µg/mL and 10 and 20 ng/mL of human epidermal growth factor (EGF) as positive controls were treated on hUC-MSCs. MTT, cell count, viability, and cell cycle assays were performed. Using Western blot analysis, the effects of extracts of H. parva and EGF on cell proliferation markers were detected. Computational modeling was done to detect effective proliferative compounds in the aqueous extract of H. parva. A MTT assay showed that the 10, 20, and 40 µg/mL aqueous extract of H. parva had a proliferative effect on hUC-MSCs. The cell count, which was treated with a 20 µg/mL concentration, increased faster and higher than the control group (p < 0.05). This concentration of the extract did not have a significant effect on hUC-MSCs' viability. The cell cycle assay of hUC-MSCs showed that the percentage of cells in the G2 stage of the extract was biologically higher than the control group. Expression of cyclin D1, cyclin D3, cyclin E, HIF-1α, and TERT was increased compared with the control group. Moreover, expression of p21 and PCNA decreased after treating hUC-MSCs with the extract. However, CDC-2/cdk-1 and ERK1/2 had almost the same expression as the control group. The expression of CDK-4 and CDK-6 decreased after treatment. Between the detected compounds, 1-methyl-4-(1-methyl phenyl)-benzene showed better affinity to CDK-4 and p21 than tetradecanoic acid. The H. parva aqueous extract showed proliferative potential on hUC-MSCs.
Assuntos
Holothuria , Pepinos-do-Mar , Animais , Humanos , Fator de Crescimento Epidérmico/farmacologia , Diferenciação Celular , Cordão Umbilical , Células-TroncoRESUMO
This study set out to evaluate the wound healing properties of brittle star extracts in vitro and in vivo. Due to the great arm regeneration potential of the brittle star, Ophiocoma cynthiae, the present study aimed to evaluate the wound healing effect of hydroalcoholic extracts of brittle star undergoing arm regeneration in wound healing models. The brittle star samples were collected from Nayband Bay, Bushehr, Iran. After wound induction in the arm of brittle stars, hydroalcoholic extracts relating to different times of arm regeneration were prepared. The GC-MS analysis, in vitro MTT cell viability and cell migration, Western blot, and computational analysis tests were performed. Based on the in vitro findings, two BSEs were chosen for in vivo testing. Macroscopic, histopathological and biochemical evaluations were performed after treatments. The results showed positive proliferative effects of BSEs. Specifically, forty-two compounds were detected in all groups of BSEs using GC-MS analysis, and their biological activities were assessed. The MTT assay showed that the 14 d BSE had a higher proliferative effect on HFF cells than 7 d BSE. The cell migration assay showed that the wound area in 7 d and 14 d BSEs was significantly lower than in the control group. Western blot analysis demonstrated an increase in the expression of proliferation-related proteins. Upon the computational analysis, a strong affinity of some compounds with proteins was observed. The in vivo analysis showed that the evaluation of wound changes and the percentage of wound healing in cell migration assay in the 7 d BSE group was better than in the other groups. Histopathological scores of the 7 d BSE and 14 d BSE groups were significantly higher than in the other groups. In conclusion, the hydroalcoholic extract of O. cynthiae undergoing arm regeneration after 7 and 14 days promoted the wound healing process in the cell and rat skin wound healing model due to their proliferative and migratory biological activity.
Assuntos
Extratos Vegetais , Cicatrização , Ratos , Animais , Extratos Vegetais/farmacologia , Equinodermos , Movimento Celular , Extratos de Tecidos/farmacologiaRESUMO
An automatic decellularization device was developed to perfuse and decellularize male rats' kidneys using both sodium lauryl ether sulfate (SLES) and sodium dodecyl sulfate (SDS) and to compare their efficacy in kidney decellularization and post-transplantation angiogenesis. Kidneys were perfused with either 1% SDS solution for 4 h or 1% SLES solution for 6 h. The decellularized scaffolds were stained with hematoxylin and eosin, periodic acid Schiff, Masson's trichrome, and Alcian blue to determine cell removal and glycogen, collagen, and glycosaminoglycan contents, respectively. Moreover, scanning electron microscopy was performed to evaluate the cell removal and preservation of microarchitecture of both SDS and SLES scaffolds. Additionally, DNA quantification assay was applied for all groups in order to measure residual DNA in the scaffolds and normal kidney. In order to demonstrate biocompatibility of the decellularized scaffolds, human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs) were seeded on the scaffolds. In addition, the allotransplantation was performed in back muscle and angiogenesis was evaluated. Complete cell removal in both SLES and SDS groups was observed in scanning electron microscopy and DNA quantification assays. Moreover, the extracellular matrix (ECM) architecture of rat kidney in the SLES group was significantly preserved better than the SDS group. The hUC-MSCs were successfully migrated from the cell culture plate surface into the SDS and SLES decellularized scaffolds. The formation of blood vessels was observed in the kidney in both SLES and SDS decellularized kidneys. The better preservation of ECM than SDS introduces SLES as the solvent of choice for kidney decellularization.
Assuntos
Matriz Extracelular Descelularizada/química , Rim/química , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Alicerces Teciduais/química , Animais , Rim/citologia , Rim/ultraestrutura , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco , Células-Tronco/citologia , Engenharia TecidualRESUMO
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women. PCOS is characterized by anovulation, hyperandrogenism, polycystic ovaries, insulin resistance, and obesity. Despite the finding that the genetic origin of PCOS is well demonstrated in previous twin and familial clustering studies, genes and factors that can exactly explain the PCOS pathophysiology are not known. Objective(s). In this review, we attempted to identify genes related to secretion and signaling of insulin aspects of PCOS and their physiological functions in order to explain the pathways that are regulated by these genes which can be a prominent function in PCOS predisposition. Materials and Methods. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women from peer-reviewed journals in PubMed and Google Scholar databases were included in this review. Results. The genomic investigations in women of different populations identified many candidate genes and loci that are associated with PCOS. The most important of them are INSR, IRS1-2, MTNR1A, MTNR1B, THADA, PPAR-γ2, ADIPOQ, and CAPN10. These are mainly associated with metabolic aspects of PCOS. Conclusions. In this review, we proposed that each of these genes may interrupt specific physiological pathways by affecting them and contribute to PCOS initiation. It is clear that the role of genes involved in insulin secretion and signaling is more critical than other pathways.
Assuntos
Hiperandrogenismo , Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Predisposição Genética para Doença/genética , Humanos , Resistência à Insulina/genética , Secreção de Insulina/genética , Síndrome do Ovário Policístico/genéticaRESUMO
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
RESUMO
This bibliometric review examines the current state of research on fucoidan, a sulphated polysaccharide found in brown seaweed species, and its potential for wound healing. The review included 58 studies that investigated fucoidan's effects on wound healing, revealing that it possesses anti-inflammatory and antioxidant properties that could aid in the healing process. Fucoidan was also found to promote cell proliferation, migration, and angiogenesis, essential for wound healing. However, the optimal dosage, treatment duration, safety, and efficacy of fucoidan in various wound types and patient populations still require further investigation. Additionally, advanced wound dressings like hydrogels have garnered significant attention for their potential in wound healing. While this review indicates promise for fucoidan as a natural wound healing compound, it underscores the need for additional clinical trials to determine its optimal use as a commercial therapeutic agent in wound healing.
RESUMO
Regenerative effects of sea anemone-derived exosomes on human foreskin fibroblasts (HFFs) were investigated. Water-based extracts from regenerating Aulactinia stella tissue were collected at various time points, and exosomes were extracted after inducing wounds. Both the extract and exosomes were tested on HFF for proliferation and in vitro wound healing. In silico analysis explored protein-protein docking between regenerative exosome proteins and HFF receptors. The MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide proliferation assay and in vitro wound healing test of aquatic extract showed proliferative effects on HFF cell lines, with the 60 µg/mL concentration significantly enhancing cell migration. Exosomes were characterised. Exosomes showed a significantly positive effect on cell proliferation and migration at the 50 µg/mL concentration 48 h post-wound induction. In silico analysis revealed potential binding affinities between exosome proteins and HFF receptors. In conclusion, optimised concentrations of A. stella-derived exosomes exhibited positive effects on HFF regeneration and migration, suggesting their potential in accelerating wound healing.
RESUMO
Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.
Assuntos
Células Progenitoras Endoteliais , Falência Renal Crônica , Células-Tronco Mesenquimais , Simulação de Acoplamento Molecular , Insuficiência Renal Crônica , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Falência Renal Crônica/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Rim/patologia , Rim/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , AdultoRESUMO
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
RESUMO
Marine invertebrates are multicellular organisms consisting of a wide range of marine environmental species. Unlike vertebrates, including humans, one of the challenges in identifying and tracking invertebrate stem cells is the lack of a specific marker. Labeling stem cells with magnetic particles provides a non-invasive, in vivo tracking method using MRI. This study suggests antibody-conjugated iron nanoparticles (NPs), which are detectable with MRI for in vivo tracking, to detect stem cell proliferation using the Oct4 receptor as a marker of stem cells. In the first phase, iron NPs were fabricated, and their successful synthesis was confirmed using FTIR spectroscopy. Next, the Alexa Fluor anti-Oct4 antibody was conjugated with as-synthesized NPs. Their affinity to the cell surface marker in fresh and saltwater conditions was confirmed using two types of cells, murine mesenchymal stromal/stem cell culture and sea anemone stem cells. For this purpose, 106 cells of each type were exposed to NP-conjugated antibodies and their affinity to antibodies was confirmed by an epi-fluorescent microscope. The presence of iron-NPs imaged with the light microscope was confirmed by iron staining using Prussian blue stain. Next, anti-Oct4 antibodies conjugated with iron NPs were injected into a brittle star, and proliferating cells were tracked by MRI. To sum up, anti-Oct4 antibodies conjugated with iron NPs not only have the potential for identifying proliferating stem cells in different cell culture conditions of sea anemone and mouse cell cultures but also has the potential to be used for in vivo MRI tracking of marine proliferating cells.
Assuntos
Nanopartículas de Magnetita , Nanopartículas , Humanos , Camundongos , Animais , Ferro , Medicina Regenerativa , Anticorpos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/químicaRESUMO
Several studies and research papers have been published to elucidate and understand the mechanism of the coronavirus disease 2019 (COVID-19) pandemic and its long-term effects on the human body. COVID-19 affects a number of organs, including the female reproductive system. However, less attention has been given to the effects of COVID-19 on the female reproductive system due to their low morbidity. The results of studies investigating the relationship between COVID-19 infection and ovarian function in women of reproductive age have shown the harmless involvement of COVID-19 infection. Several studies have reported the involvement of COVID-19 infection in oocyte quality, ovarian function, and dysfunctions in the uterine endometrium and the menstrual cycle. The findings of these studies indicate that COVID-19 infection negatively affects the follicular microenvironment and dysregulate ovarian function. Although the COVID-19 pandemic and female reproductive health have been studied in humans and animals, very few studies have examined how COVID-19 affects the female reproductive system. The objective of this review is to summarize the current literature and categorize the effects of COVID-19 on the female reproductive system, including the ovaries, uterus, and hormonal profiles. The effects on oocyte maturation, oxidative stress, which causes chromosomal instability and apoptosis in ovaries, in vitro fertilization cycle, high-quality embryos, premature ovarian insufficiency, ovarian vein thrombosis, hypercoagulable state, women's menstrual cycle, the hypothalamus-pituitary-ovary axis, and sex hormones, including estrogen, progesterone, and the anti-Müllerian hormone, are discussed in particular.
Assuntos
COVID-19 , Pandemias , Animais , Feminino , Humanos , COVID-19/prevenção & controle , Ovário , Progesterona/farmacologia , VacinaçãoRESUMO
Human leukocyte antigen (HLA-G) participates in immunosuppression and is useful for prenatal diagnostics. Isolation of fetal cells positive for HLA-G by HLA-G antibody conjugated nanoparticles from the cervix of pregnant women is the basis for non-invasive prenatal testing. Endocervical specimens are fixed in transport medium before isolation using antibody conjugated nanoparticles. Staining of HLA-G using MEM-G/9 antibody, however, is restricted to unfixed cells. We investigated the effect of several fixatives on the interaction of HLA-G with MEM-G/9 in the HLA-G-positive cell line, JEG-3. We investigated absolute methanol, 1:1 acetate buffer:methanol, Pap solution and paraformaldehyde. The effects of these fixatives were evaluated using immunofluorescence. We found no MEM-G/9 surface staining of methanol fixed cells. Approximately 40% of JEG-3 cells fixed with paraformaldehyde failed to stain. Nearly all cells were stained with MEM-G/9 following fixation with acetate buffer:methanol or Pap solution. Our findings indicate the importance of using an appropriate fixative for preserving HLA-G cell surface antigen for studies using the MEM-G/9 antibody.
Assuntos
Antígenos HLA-G , Neoplasias Trofoblásticas , Linhagem Celular Tumoral , Feminino , Fixadores , Humanos , Gravidez , Coloração e RotulagemRESUMO
Despite extensive studies on type 2 diabetes mellitus (T2DM), there is no definitive cure, drug, or prevention. Therefore, for developing new therapeutics, proper study models of T2DM is necessary to conduct further preclinical researches. Diabetes has been induced in animals using chemical, genetic, hormonal, antibody, viral, and surgical methods or a combination of them. Beside different approaches of diabetes induction, different animal species have been suggested. Although more than 85% of articles have proposed rat (genus Rattus) as the proper model for diabetes induction, zebrafish (Danio rerio) models of diabetes are being used more frequently in diabetes related studies. In this systematic review, we compare different aspects of available methods of inducing hyperglycemia referred as T2DM in zebrafish by utilizing a scoring system. Evaluating 26 approved models of T2DM in zebrafish, this scoring system may help researchers to compare different T2DM zebrafish models and select the best one regarding their own research theme. Eventually, glyoxalase1 (glo1-/-) knockout model of hyperglycemia achieved the highest score. In addition to assessment of hyperglycemic induction methods in zebrafish, eight most commonly proposed diabetic induction approval methods are suggested to help researchers confirm their subsequent proposed models.
RESUMO
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
RESUMO
Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases because of having high differentiation potential while maintaining the ability to self-replicate and retaining features of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy for NOA in men.
Assuntos
Azoospermia , Exossomos , Animais , Azoospermia/terapia , Feminino , Humanos , Masculino , Espermatogênese , Células-Tronco , TestículoRESUMO
BACKGROUND: Stressful conditions increase alcohol consumption in men. Clinical studies link disruption of the neuroendocrine stress system with alcoholism, but the effect of alcohol in a stress condition on male fertility is still relatively poorly understood. This project was undertaken to evaluate the effect of sub-chronic alcohol in a stress condition on male fertility in a rat model. METHODS: Male Sprague-Dawley rats were randomly divided into a control group, a stress group that was exposed to restraint stress, an ethanol group that was injected with ethanol daily, and a stress + ethanol group that was injected with ethanol daily and was exposed to restraint stress, simultaneously. Furthermore, testis tissue was evaluated histomorphometrically and immunohistochemically for apoptosis using a TUNEL assay after 12 days. Epididymis sperm analysis was done. Blood cortisol and testosterone were measured and expression of hypothalamic kisspeptin (Kiss1), RFRP-3, and MC4R mRNA were evaluated. RESULTS: Ethanol exposure during restraint stress did not alter body weight. Ethanol exposure decreased the cellular diameter and area, and stress increased the cellular diameter and area, in comparison with the control group. In the stress group, in comparison with the other groups, the number of seminiferous tubules decreased and the numerical density of seminiferous tubules increased. In addition, ethanol exposure and/or stress reduced semen analysis parameters (sperm viability and motility), but did not change serum testosterone concentrations. Apoptosis increased in spermatogonia with ethanol exposure, but spermatocytes were not affected. Our data present the novel finding that ethanol and stress reduced hypothalamic Kiss1 mRNA expression, while ethanol exposure decreased hypothalamic RFRP-3 and MC4R mRNA expression. CONCLUSIONS: Ethanol decreased cortisol hormone level during the restraint stress condition and attenuated hypothalamic reproductive-related gene expressions. Therefore, ethanol exposure may induce reduction of sperm viability, increased sperm mortality, and increased apoptosis, with long-term effects, and may induce permanent male subfertility.
Assuntos
Etanol , Infertilidade Masculina , Estresse Psicológico , Testículo , Animais , Apoptose , Etanol/toxicidade , Infertilidade Masculina/induzido quimicamente , Kisspeptinas , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina , Motilidade dos Espermatozoides , Espermatogênese , TestosteronaRESUMO
Sea cucumber has antiviral activities against various viruses including herpes simplex virus type 1 (HSV-1). The purpose of the current study was to determine the chemical profile and inhibitory effects of tegument ethanolic extract of Holothuria parva on HSV-1 infection and to elucidate the mechanism of antiviral action of this marine invertebrate. Cytotoxic activity of the extract on Vero cell line was determined using the methyl thiazolyl tetrazolium (MTT) method. The different components in H. parva were determined by GC-MS analysis. To assess the antiviral activity of the extract, MTT and 50% tissue culture infective dose (TCID50) were applied. Finally, computational molecular docking was performed to screen the potential binding ability of extract contents with HSV-1 surface glycoproteins and host cell surface receptors. Using MTT assay, the non-cytotoxic concentration of the extract was measured 46.5 µg/mL. Octadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester and 2',6'-acetoxylidide were two major constituents in the H. parva extract. Pre-treatment of HSV-1 with the ethanolic extract of H. parva led to a 2.1 log10 TCID50 reduction in virus titers when compared to the control group (P = 0.002). The log10 TCID50 reductions relative to the control group for co-penetration and post-penetration assays were 1.5 (P = 0.009) and 0.7 (P = 0.09), respectively. The tegument ethanolic extract of H. parva has significant antiviral properties against HSV-1. Docking analysis demonstrated that compounds of the extract [lidocaine and 2-hydroxy-1-(hydroxymethyl) ethyl ester octadecanoic acid] may cover similarly both virus and host cells binding domains leading to interference in virus attachment to cell receptors.
Assuntos
Antivirais/química , Produtos Biológicos/química , Simulação por Computador , Etanol/química , Herpesvirus Humano 1/efeitos dos fármacos , Holothuria , Animais , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Etanol/farmacologia , Herpesvirus Humano 1/fisiologia , Estrutura Secundária de Proteína , Células VeroRESUMO
Stem cells have an important role in regenerative therapies, developmental biology studies and drug screening. Basic and translational research in stem cell technology needs more detailed imaging techniques. The possibility of cell-based therapeutic strategies has been validated in the stem cell field over recent years, a more detailed characterization of the properties of stem cells is needed for connectomics of large assemblies and structural analyses of these cells. The aim of stem cell imaging is the characterization of differentiation state, cellular function, purity and cell location. Recent progress in stem cell imaging field has included ultrasound-based technique to study living stem cells and florescence microscopy-based technique to investigate stem cell three-dimensional (3D) structures. Here, we summarized the fundamental characteristics of stem cells via 3D imaging methods and also discussed the emerging literatures on 3D imaging in stem cell research and the applications of both classical 2D imaging techniques and 3D methods on stem cells biology.
RESUMO
BACKGROUND: Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in many compounds. Recent evidence has displayed some cytotoxic effects of TiO 2 NPs on male reproduction. OBJECTIVE: The effects of TiO 2 NP administration on sperm parameters and chromatin and seminiferous histopathology of male mice were investigated. MATERIALS AND METHODS: In this experimental study, 32 NMRI male mice (35 ± 3 gr, 8-12-week-old) were divided into four groups (n = 8/each): treated groups were fed orally with 2.5 (group I), 5 (group II) and 10 (group III) mg/kg/day TiO 2 NPs for 40 days and the control group received phosphate buffered saline. Sperm parameters, DNA integrity and chromatin quality were assessed using chromomycin A3, aniline blue, toluidine blue staining and TUNEL. Hematoxylin eosin staining was performed to measure spermatogenic cells and the total diameter of seminiferous tubules. Also, sex hormone and malondyaldehyde levels were measured. RESULTS: Abnormal sperm tails rose in group III (28.87 ± 4.91) in comparison with the control group (12.75 ± 3.95). However, chromomycin A3 staining and TUNEL showed higher levels in group III in comparison with the control group, whereas aniline blue and toluidine blue staining showed no differences. A significantly lower spermatogenesis index and lumen parameters were observed in group III. Leydig cell numbers, cellular diameters and the area of the seminiferous tubules were lower in the treated groups. The testosterone level was also lower in these groups and the percentage of malondyaldehyde in the seminal fluid was higher. CONCLUSION: Exact mechanisms of TiO 2 NPs are not clear; however, cytotoxic and genotoxic effects of TiO 2 NPs may relate to oxidative stress. Given their widespread use, TiO 2 NPs should be a public health focus of attention.