Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 5(2): e1000362, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19197347

RESUMO

Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment--some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20 degrees C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere--anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles.


Assuntos
Adaptação Fisiológica/genética , Epsilonproteobacteria/genética , Genoma Bacteriano , Archaea/genética , Archaea/crescimento & desenvolvimento , Carbono/metabolismo , Replicação do DNA , DNA Arqueal/metabolismo , Ecossistema , Epsilonproteobacteria/crescimento & desenvolvimento , Nitrogênio/metabolismo , Oxirredução , Filogenia , Água do Mar , Transdução de Sinais , Enxofre/metabolismo , Temperatura
2.
Nature ; 438(7071): 1151-6, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16372009

RESUMO

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.


Assuntos
Alérgenos/genética , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Genoma Fúngico , Genômica , Hipersensibilidade/microbiologia , Aspergillus fumigatus/imunologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Temperatura , Virulência/genética
3.
PLoS Genet ; 4(7): e1000141, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18654632

RESUMO

We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Fixação de Nitrogênio , Análise de Sequência de DNA , Animais , Animais não Endogâmicos , Sequência de Bases , Cromossomos Bacterianos/química , Feminino , Klebsiella pneumoniae/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Virulência
4.
Nat Biotechnol ; 25(5): 569-75, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17468768

RESUMO

Dichelobacter nodosus causes ovine footrot, a disease that leads to severe economic losses in the wool and meat industries. We sequenced its 1.4-Mb genome, the smallest known genome of an anaerobe. It differs markedly from small genomes of intracellular bacteria, retaining greater biosynthetic capabilities and lacking any evidence of extensive ongoing genome reduction. Comparative genomic microarray studies and bioinformatic analysis suggested that, despite its small size, almost 20% of the genome is derived from lateral gene transfer. Most of these regions seem to be associated with virulence. Metabolic reconstruction indicated unsuspected capabilities, including carbohydrate utilization, electron transfer and several aerobic pathways. Global transcriptional profiling and bioinformatic analysis enabled the prediction of virulence factors and cell surface proteins. Screening of these proteins against ovine antisera identified eight immunogenic proteins that are candidate antigens for a cross-protective vaccine.


Assuntos
Antígenos/imunologia , Antígenos/uso terapêutico , Dichelobacter nodosus/genética , Dichelobacter nodosus/patogenicidade , Pododermatite Necrótica dos Ovinos/imunologia , Pododermatite Necrótica dos Ovinos/microbiologia , Análise de Sequência de DNA/métodos , Animais , Antígenos/genética , Mapeamento Cromossômico/métodos , Dichelobacter nodosus/imunologia , Dichelobacter nodosus/metabolismo , Pododermatite Necrótica dos Ovinos/prevenção & controle , Genoma Bacteriano/genética
5.
PLoS Pathog ; 3(10): 1401-13, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17953480

RESUMO

Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.


Assuntos
Babesia bovis/genética , DNA de Protozoário/análise , Genes de Protozoários , Plasmodium falciparum/genética , Theileria parva/genética , Animais , Antígenos de Protozoários/imunologia , Babesia bovis/imunologia , Babesia bovis/metabolismo , Babesiose/parasitologia , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Cromossomos , DNA Complementar/análise , Evolução Molecular , Biblioteca Genômica , Dados de Sequência Molecular , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia , Theileria parva/imunologia , Theileria parva/metabolismo
6.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201974

RESUMO

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Genoma Bacteriano , Microbiologia do Solo , Antibacterianos/biossíntese , Transporte Biológico , Metabolismo dos Carboidratos , Cianobactérias/genética , DNA Bacteriano/química , Fungos/genética , Macrolídeos/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Filogenia , Proteobactérias/genética , Análise de Sequência de DNA , Homologia de Sequência
7.
PLoS Biol ; 4(6): e188, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16729848

RESUMO

Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192-base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission.


Assuntos
Afídeos/metabolismo , Afídeos/microbiologia , Bacteroidetes/metabolismo , Simbiose/genética , Simbiose/fisiologia , Aminoácidos/biossíntese , Aminoácidos/deficiência , Animais , Coenzimas/biossíntese , Evolução Molecular , Previsões , Genes Bacterianos , Genoma Bacteriano , Genômica/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Vitaminas/biossíntese
8.
PLoS Genet ; 2(12): e214, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17194220

RESUMO

Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.


Assuntos
Arthrobacter/crescimento & desenvolvimento , Arthrobacter/genética , Genoma Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo , Arthrobacter/química , Arthrobacter/metabolismo , Atrazina/metabolismo , Biodegradação Ambiental , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/fisiologia , Elementos de DNA Transponíveis/genética , DNA Circular/química , Metabolismo Energético/genética , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico
9.
PLoS Genet ; 2(2): e21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16482227

RESUMO

Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.


Assuntos
Ehrlichia/genética , Ehrlichiose/genética , Genômica/métodos , Animais , Biotina/metabolismo , Reparo do DNA , Ehrlichiose/microbiologia , Genoma , Humanos , Modelos Biológicos , Filogenia , Rickettsia/genética , Carrapatos
10.
J Bacteriol ; 190(15): 5455-63, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18556790

RESUMO

The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides. Approximately one-third of these putative proteins (57) are predicted to contain carbohydrate binding modules derived from 13 of the 49 known families. Sequence analysis reveals approximately 130 predicted glycoside hydrolases that target the major structural and storage plant polysaccharides. In common with that of the colonic prokaryote Bacteroides thetaiotaomicron, the genome of C. japonicus is predicted to encode a large number of GH43 enzymes, suggesting that the extensive arabinose decorations appended to pectins and xylans may represent a major nutrient source, not just for intestinal bacteria but also for microorganisms that occupy terrestrial ecosystems. The results presented here predict that C. japonicus possesses an extensive range of glycoside hydrolases, lyases, and esterases. Most importantly, the genome of C. japonicus is remarkably similar to that of the gram-negative marine bacterium, Saccharophagus degradans 2-40(T). Approximately 50% of the predicted C. japonicus plant-degradative apparatus appears to be shared with S. degradans, consistent with the utilization of plant-derived complex carbohydrates as a major substrate by both organisms.


Assuntos
Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cellvibrio/enzimologia , Cellvibrio/genética , Genoma Bacteriano , Plantas/metabolismo , Alteromonadaceae/genética , Esterases/genética , Genômica , Glicosídeo Hidrolases/genética , Liases/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Microbiologia do Solo , Sintenia
11.
Nat Biotechnol ; 23(7): 873-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15980861

RESUMO

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Assuntos
Genoma Bacteriano , Pseudomonas fluorescens/genética , Sequência de Bases , Transporte Biológico/genética , Genes Bacterianos , Dados de Sequência Molecular , Família Multigênica , Plantas/microbiologia , Pseudomonas fluorescens/metabolismo , Análise de Sequência de DNA , Sideróforos/biossíntese , Sideróforos/genética
12.
PLoS Biol ; 2(10): e303, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15383840

RESUMO

Methanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath), obtained by the shotgun sequencing approach. Analysis revealed a 3.3-Mb genome highly specialized for a methanotrophic lifestyle, including redundant pathways predicted to be involved in methanotrophy and duplicated genes for essential enzymes such as the methane monooxygenases. We used phylogenomic analysis, gene order information, and comparative analysis with the partially sequenced methylotroph Methylobacterium extorquens to detect genes of unknown function likely to be involved in methanotrophy and methylotrophy. Genome analysis suggests the ability of M. capsulatus to scavenge copper (including a previously unreported nonribosomal peptide synthetase) and to use copper in regulation of methanotrophy, but the exact regulatory mechanisms remain unclear. One of the most surprising outcomes of the project is evidence suggesting the existence of previously unsuspected metabolic flexibility in M. capsulatus, including an ability to grow on sugars, oxidize chemolithotrophic hydrogen and sulfur, and live under reduced oxygen tension, all of which have implications for methanotroph ecology. The availability of the complete genome of M. capsulatus (Bath) deepens our understanding of methanotroph biology and its relationship to global carbon cycles. We have gained evidence for greater metabolic flexibility than was previously known, and for genetic components that may have biotechnological potential.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma , Metano/metabolismo , Methylococcus capsulatus/genética , Proteínas de Bactérias/química , Carbono/química , Transporte de Elétrons , Ácidos Graxos/química , Genoma Bacteriano , Genômica/métodos , Metano/química , Modelos Biológicos , Dados de Sequência Molecular , Nitrogênio/química , Oxigênio/química , Oxigênio/metabolismo , Peptídeos/química , Filogenia , Análise de Sequência de DNA
13.
Nat Biotechnol ; 22(5): 554-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15077118

RESUMO

Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.


Assuntos
Desulfovibrio vulgaris/genética , Genoma Bacteriano , Desulfovibrio vulgaris/metabolismo , Metabolismo Energético , Dados de Sequência Molecular
14.
Nat Biotechnol ; 20(11): 1118-23, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12368813

RESUMO

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613-base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion-reducing capabilities.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Análise de Sequência de DNA , Análise de Sequência de Proteína , Shewanella/genética , Shewanella/metabolismo , Sequência de Aminoácidos , Biodegradação Ambiental , Respiração Celular , Transporte de Elétrons , Expressão Gênica , Metais/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Compostos Orgânicos/metabolismo , Oxirredução , Plasmídeos , Proteômica/métodos , Alinhamento de Sequência/métodos , Shewanella/classificação , Shewanella/patogenicidade , Especificidade da Espécie , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
15.
Nucleic Acids Res ; 32(8): 2386-95, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15115801

RESUMO

The genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively. Eighty-three genes were restricted to serotype 1/2a and 51 to serotype 4b strains. These strain- and serotype-specific genes probably contribute to observed differences in pathogenicity, and the ability of the organisms to survive and grow in their respective environmental niches. The serotype 1/2a-specific genes include an operon that encodes the rhamnose biosynthetic pathway that is associated with teichoic acid biosynthesis, as well as operons for five glycosyl transferases and an adenine-specific DNA methyltransferase. A total of 8603 and 105 050 high quality single nucleotide polymorphisms (SNPs) were found on the draft genome sequences of strain H7858 and strain F6854, respectively, when compared with strain F2365. Whole genome comparative analyses revealed that the L.monocytogenes genomes are essentially syntenic, with the majority of genomic differences consisting of phage insertions, transposable elements and SNPs.


Assuntos
Microbiologia de Alimentos , Genoma Bacteriano , Genômica , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Composição de Bases , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Listeria monocytogenes/metabolismo , Carne/microbiologia , Fases de Leitura Aberta/genética , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Prófagos/genética , Sorotipagem , Especificidade da Espécie , Sintenia , Virulência/genética
16.
Genome Announc ; 3(1)2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635016

RESUMO

Here, we present the complete 2,003,803-bp genome of a sulfate-reducing thermophilic bacterium, Thermodesulfovibrio yellowstonii strain DSM 11347(T).

17.
Genome Announc ; 3(1)2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635017

RESUMO

Here, we present the complete genome sequence of Thermodesulfobacterium commune DSM 2178(T) of the phylum Thermodesulfobacteria.

18.
Genome Announc ; 2(4)2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25146141

RESUMO

Here we present the draft genome of Synergistes jonesii 78-1, ATCC 49833, a member of the Synergistes phylum. This organism was isolated from the rumen of a Hawaiian goat and ferments pyridinediols. The assembly contains 2,747,397 bp in 61 contigs.

19.
PLoS One ; 7(3): e33280, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432010

RESUMO

Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.


Assuntos
Borrelia burgdorferi/genética , Instabilidade Genômica/genética , Genômica , Doença de Lyme/microbiologia , Plasmídeos/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/isolamento & purificação , Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo , Variação Genética , Genoma Bacteriano , Recombinação Homóloga/genética , Humanos , Mutação/genética , Fases de Leitura Aberta/genética , Pseudogenes/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem/genética
20.
PLoS One ; 6(7): e21743, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750729

RESUMO

Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.


Assuntos
Variação Genética , Genoma de Cloroplastos/genética , Genoma Mitocondrial/genética , Ricinus communis/genética , Sequência de Bases , Ricinus communis/classificação , Ricinus communis/crescimento & desenvolvimento , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Circular/química , DNA Circular/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA de Plantas/química , DNA de Plantas/genética , Genoma de Planta/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA