Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
NMR Biomed ; : e4948, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038086

RESUMO

Brain metastasis is responsible for a large proportion of cancer mortality, and there are currently no effective treatments. Moreover, the impact of treatments, particularly antiangiogenic therapeutics, is difficult to ascertain using current magnetic resonance imaging (MRI) methods. Imaging of the angiogenic vasculature has been successfully carried out in solid tumours using microparticles of iron oxide (MPIO) conjugated to a Arg-Gly-Asp peptide (RGD) targeting integrin αv ß3 . The aim of this study was to determine whether RGD-MPIO could be used to identify angiogenic blood vessels in brain metastases in vivo. A mouse model of intracerebrally implanted brain macrometastasis was established through intracerebral injection of 4T1-GFP cells. T2 *-weighted imaging was used to visualise MPIO-induced hypointense voxels in vivo, and Prussian blue staining was used to visualise MPIO and endogenous iron histologically ex vivo. The RGD-MPIO showed target-specific binding in vivo, but the sensitivity of the agent for visualising angiogenic vessels per se was reduced by the presence of endogenous iron-laden macrophages in larger metastases, resulting in pre-existing hypointense areas within the tumour. Further, our data suggest that peptide-targeted MPIO, but not antibody-targeted MPIO, are taken up by perivascular macrophages within the macrometastatic microenvironment, resulting in additional nonspecific contrast. While pre-MPIO imaging will circumvent the issues surrounding pre-existing hypointensities and enable detection of specific contrast, our preliminary findings suggest that the use of antibodies rather than peptides as the targeting ligand may represent a preferable route forward for new angiogenesis-targeted molecular MRI agents.

2.
Cereb Cortex ; 32(8): 1608-1624, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34518890

RESUMO

Comparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy. The results demonstrate an expansion of the frontal projections of the superior longitudinal fasciculus complex in squirrel monkeys and rhesus macaques compared to ring-tailed lemurs, which correlates with sulcal anatomy and the lemur's smaller prefrontal granular cortex. The connectivity of the ventral pathway in the parietal region is also comparatively reduced in ring-tailed lemurs, with the posterior projections of the inferior longitudinal fasciculus not extending toward parietal cortical areas as in the other species. In the squirrel monkeys we note a very specific occipito-parietal anatomy that is apparent in their surface anatomy and the expansion of the posterior projections of the optical radiation. Our study supports the hypothesis that the connectivity of the prefrontal-parietal regions became relatively elaborated in the simian lineage after divergence from the prosimian lineage.


Assuntos
Substância Branca , Animais , Mapeamento Encefálico/métodos , Macaca mulatta , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Lobo Parietal , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
3.
Cereb Cortex ; 32(13): 2831-2842, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34849623

RESUMO

Brains come in many shapes and sizes. Nature has endowed big-brained primate species like humans with a proportionally large cerebral cortex. Comparative studies have suggested, however, that the total volume allocated to white matter connectivity-the brain's infrastructure for long-range interregional communication-does not keep pace with the cortex. We investigated the consequences of this allometric scaling on brain connectivity and network organization. We collated structural and diffusion magnetic resonance imaging data across 14 primate species, describing a comprehensive 350-fold range in brain size across species. We show volumetric scaling relationships that indeed point toward a restriction of macroscale connectivity in bigger brains. We report cortical surface area to outpace white matter volume, with larger brains showing lower levels of overall connectedness particularly through sparser long-range connectivity. We show that these constraints on white matter connectivity are associated with longer communication paths, higher local network clustering, and higher levels of asymmetry in connectivity patterns between homologous areas across the left and right hemispheres. Our findings reveal conserved scaling relationships of major brain components and show consequences for macroscale brain circuitry, providing insights into the connectome architecture that could be expected in larger brains such as the human brain.


Assuntos
Conectoma , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Córtex Cerebral/patologia , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética , Primatas , Substância Branca/diagnóstico por imagem
4.
Magn Reson Med ; 79(2): 952-959, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28470858

RESUMO

PURPOSE: To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. METHODS: For DW-STEAM, reference measurements at long diffusion times have significant b0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b0 ) and constant gradient area (fixed-q0 ). Fixed-b0 and fixed-q0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. RESULTS: Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q0 versus fixed-b0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. CONCLUSIONS: Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Corpo Caloso/diagnóstico por imagem , Humanos , Processamento de Sinais Assistido por Computador
5.
NMR Biomed ; 29(11): 1624-1633, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27686882

RESUMO

The purpose of this study was to develop realistic phantom models of the intracellular environment of metastatic breast tumour and naïve brain, and using these models determine an analysis metric for quantification of CEST MRI data that is sensitive to only labile proton exchange rate and concentration. The ability of the optimal metric to quantify pH differences in the phantoms was also evaluated. Novel phantom models were produced, by adding perchloric acid extracts of either metastatic mouse breast carcinoma cells or healthy mouse brain to bovine serum albumin. The phantom model was validated using 1 H NMR spectroscopy, then utilized to determine the sensitivity of CEST MRI to changes in pH, labile proton concentration, T1 time and T2 time; six different CEST MRI analysis metrics (MTRasym , APT*, MTRRex , AREX and CESTR* with and without T1 /T2 compensation) were compared. The new phantom models were highly representative of the in vivo intracellular environment of both tumour and brain tissue. Of the analysis methods compared, CESTR* with T1 and T2 time compensation was optimally specific to changes in the CEST effect (i.e. minimal contamination from T1 or T2 variation). In phantoms with identical protein concentrations, pH differences between phantoms could be quantified with a mean accuracy of 0.6 pH units. We propose that CESTR* with T1 and T2 time compensation is the optimal analysis method for these phantoms. Analysis of CEST MRI data with T1 /T2 time compensated CESTR* is reproducible between phantoms, and its application in vivo may resolve the intracellular alkalosis associated with breast cancer brain metastases without the need for exogenous contrast agents.


Assuntos
Algoritmos , Concentração de Íons de Hidrogênio , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imagem Molecular/instrumentação , Neoplasias Experimentais/química , Processamento de Sinais Assistido por Computador , Animais , Desenho de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagem Molecular/métodos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia , Imagens de Fantasmas , Espectroscopia de Prótons por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Neurosci ; 33(50): 19499-503, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336716

RESUMO

Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral hemisphere correlated significantly with learning rate. Immunohistological analysis conducted on a subset of 24 animals (eight per group) revealed significantly increased myelin staining in the WM underlying motor cortex in the hemisphere contralateral (but not ipsilateral) to the trained limb for the skilled learning group versus the control groups. Within the trained hemisphere (but not the untrained hemisphere), myelin staining density correlated significantly with learning rate. Our results suggest that learning a novel motor skill induces structural change in task-relevant WM pathways and that these changes may in part reflect learning-related increases in myelination.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Anisotropia , Imagem de Difusão por Ressonância Magnética , Masculino , Plasticidade Neuronal/fisiologia , Ratos
7.
Int J Cancer ; 134(4): 885-96, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23913394

RESUMO

Metastasis to the brain results in significant impairment of brain function and poor patient survival. Currently, magnetic resonance imaging (MRI) is under-utilised in monitoring brain metastases and their effects on brain function. Here, we sought to establish a model of focal brain metastasis in the rat that enables serial multimodal structural and functional MRI studies, and to assess the sensitivity of these approaches to metastatic growth. Female Berlin-Druckrey-IX rats were injected intracerebrally with metastatic ENU1564 cells in the ventroposterior medial nucleus (VPM) of the thalamus, a relay node of the whisker-to-barrel cortex pathway. Animals underwent multimodal structural and vascular MRI, as well as functional MRI of the cortical blood oxygenation level dependent (BOLD) responses to whisker pad stimulation. T2 , diffusion, magnetisation transfer and perfusion weighted MRI enabled differentiation between a central area of more advanced metastatic growth and penumbral regions of co-optive perivascular micrometastatic growth, with magnetisation transfer MRI being the most sensitive to micrometastatic growth. Areas of cortical BOLD activation in response to whisker pad stimulation were significantly reduced in the hemisphere containing metastases in the VPM. The reduction in BOLD response correlated with metastatic burden in the thalamus, and was sensitive to the presence of smaller metastases than currently detectable clinically. Our findings suggest that multimodal MRI provides greater sensitivity to tumour heterogeneity and micrometastatic growth than single modality contrast-enhanced MRI. Understanding the relationships between these MRI parameters and the underlying pathology may greatly enhance the utility of MRI in diagnosis, staging and monitoring of brain metastasis.


Assuntos
Neoplasias Encefálicas/secundário , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Neoplasias Mamárias Experimentais/patologia , Imagem Multimodal , Animais , Biomarcadores Tumorais/análise , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Feminino , Técnicas Imunoenzimáticas , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Micrometástase de Neoplasia , Ratos , Células Tumorais Cultivadas
8.
Neuroimage ; 75: 177-186, 2013 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-23473937

RESUMO

Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+15.9±2%) and a negative BOLD response in the dorsal raphe nucleus (-9.9±4.2%) and nucleus accumbens (-7.7±5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p<0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p<0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways.


Assuntos
Encéfalo/metabolismo , Inflamação/metabolismo , Imageamento por Ressonância Magnética/métodos , Serotonina/metabolismo , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fenfluramina/farmacologia , Fluorbenzenos/farmacologia , Processamento de Imagem Assistida por Computador , Fluxometria por Laser-Doppler , Masculino , Microdiálise , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Serotonina/análise , Antagonistas da Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
9.
Magn Reson Med ; 70(2): 556-67, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23008121

RESUMO

Amide Proton Transfer (APT) reports on contrast derived from the exchange of protons between amide groups and water. Commonly, APT contrast is quantified by asymmetry analysis, providing an ensemble contrast of both amide proton concentration and exchange rate. An alternative is to sample the off-resonant spectrum and fit an exchange model, permitting the APT effect to be quantified, correcting automatically for confounding effects of spillover, field inhomogeneity, and magnetization transfer. Additionally, it should permit amide concentration and exchange rate to be independently quantified. Here, a Bayesian method is applied to this problem allowing pertinent prior information to be specified. A three-pool model was used incorporating water protons, amide protons, and magnetization transfer effect. The method is demonstrated in simulations, creatine phantoms with varying pH and in vivo (n = 7). The Bayesian model-based approach was able to quantify the APT effect accurately (root-mean-square error < 2%) even when subject to confounding field variation and magnetization transfer effect, unlike traditional asymmetry analysis. The in vivo results gave approximate APT concentration (relative to water) and exchange rate values of 3 × 10(-3) and 15 s(-1) . A degree of correlation was observed between these parameter making the latter difficult to quantify with absolute accuracy, suggesting that more optimal sampling strategies might be required.


Assuntos
Amidas/metabolismo , Água Corporal/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Reconhecimento Automatizado de Padrão/métodos , Adulto , Teorema de Bayes , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
10.
Brain Struct Funct ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904002

RESUMO

The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.

11.
Nat Commun ; 14(1): 4320, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468455

RESUMO

Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.


Assuntos
Conectoma , Macaca , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Autopsia , Conectoma/métodos
12.
Elife ; 112022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35297760

RESUMO

Post-mortem magnetic resonance imaging (MRI) provides the opportunity to acquire high-resolution datasets to investigate neuroanatomy and validate the origins of image contrast through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), a data release platform providing open access to curated, multimodal post-mortem neuroimaging datasets. Datasets span three themes-Digital Neuroanatomist: datasets for detailed neuroanatomical investigations; Digital Brain Zoo: datasets for comparative neuroanatomy; and Digital Pathologist: datasets for neuropathology investigations. The first Digital Brain Bank data release includes 21 distinctive whole-brain diffusion MRI datasets for structural connectivity investigations, alongside microscopy and complementary MRI modalities. This includes one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion MRI in fourteen nonhuman primate species, and one of the largest post-mortem whole-brain cohort imaging studies in neurodegeneration. The Digital Brain Bank is the culmination of our lab's investment into post-mortem MRI methodology and MRI-microscopy analysis techniques. This manuscript provides a detailed overview of our work with post-mortem imaging to date, including the development of diffusion MRI methods to image large post-mortem samples, including whole, human brains. Taken together, the Digital Brain Bank provides cross-scale, cross-species datasets facilitating the incorporation of post-mortem data into neuroimaging studies.


Assuntos
Acesso à Informação , Encéfalo , Animais , Autopsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
13.
Brain Struct Funct ; 226(8): 2497-2509, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34264391

RESUMO

Large-scale comparative neuroscience requires data from many species and, ideally, at multiple levels of description. Here, we contribute to this endeavor by presenting diffusion and structural MRI data from eight primate species that have not or rarely been described in the literature. The selected samples from the Primate Brain Bank cover a prosimian, New and Old World monkeys, and a great ape. We present preliminary labelling of the cortical sulci and tractography of the optic radiation, dorsal part of the cingulum bundle, and dorsal parietal-frontal and ventral temporal-frontal longitudinal white matter tracts. Both dorsal and ventral association fiber systems could be observed in all samples, with the dorsal tracts occupying much less relative volume in the prosimian than in other species. We discuss the results in the context of known primate specializations and present hypotheses for further research. All data and results presented here are available online as a resource for the scientific community.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Vias Neurais/diagnóstico por imagem , Primatas , Substância Branca/diagnóstico por imagem
14.
J Cereb Blood Flow Metab ; 41(7): 1592-1607, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33153376

RESUMO

Molecular magnetic resonance imaging (MRI) allows visualization of biological processes at the molecular level. Upregulation of endothelial ALCAM (activated leukocyte cell adhesion molecule) is a key element for leukocyte recruitment in neurological disease. The aim of this study, therefore, was to develop a novel molecular MRI contrast agent, by conjugating anti-ALCAM antibodies to microparticles of iron oxide (MPIO), for detection of endothelial ALCAM expression in vivo. Binding specificity of ALCAM-MPIO was demonstrated in vitro under static and flow conditions. Subsequently, in a proof-of-concept study, mouse models of brain metastasis were induced by intracardial injection of brain-tropic human breast carcinoma, lung adenocarcinoma or melanoma cells to upregulate endothelial ALCAM. At selected time-points, mice were injected intravenously with ALCAM-MPIO, and ALCAM-MPIO induced hypointensities were observed on T2*-weighted images in all three models. Post-gadolinium MRI confirmed an intact blood-brain barrier, indicating endoluminal binding. Correlation between endothelial ALCAM expression and ALCAM-MPIO binding was confirmed histologically. Statistical analysis indicated high sensitivity (80-90%) and specificity (79-83%) for detection of endothelial ALCAM in vivo with ALCAM-MPIO. Given reports of endothelial ALCAM upregulation in numerous neurological diseases, this advance in our ability to image ALCAM in vivo may yield substantial improvements for both diagnosis and targeted therapy.


Assuntos
Molécula de Adesão de Leucócito Ativado/química , Adenocarcinoma de Pulmão/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Meios de Contraste/metabolismo , Melanoma/tratamento farmacológico , Molécula de Adesão de Leucócito Ativado/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Compostos Férricos/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos SCID , Invasividade Neoplásica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Magn Reson Imaging ; 67: 101-108, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935444

RESUMO

PURPOSE: High resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B0 shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images. The effect corrupts the composite echo image and limits the image resolution that is realised. A real-time adaptive B0 stabilisation during respiration gated 3D MGE scanning is shown to reduce image misalignment and improve detection of molecularly targeted iron oxide particles in composite images of the mouse brain. METHODS: An optional B0 measurement block consisting of a 16 µs hard pulse with FA 1°, an acquisition delay of 3.2 ms, followed by gradient spoiling in all three axes was added to a respiration gated 3D MGE scan. During the acquisition delay of each B0 measurement block the NMR signal was routed to a custom built B0 stabilisation unit which mixed the signal to an audio frequency nominally centred around 1000 Hz to enable an Arduino based single channel receiver to measure frequency shifts. The frequency shift was used to effect correction to the main magnetic field via the B0 coil. The efficacy of B0 stabilisation and respiration gating was validated in vivo and used to improve detection of molecularly targeted microparticles of iron oxide (MPIO) in a mouse model of acute neuroinflammation. RESULTS: Without B0 stabilisation 3D MGE image data exhibit varying mixtures of translation, scaling and blurring, which compromise the fidelity of the composite image. The real-time adaptive B0 stabilisation minimises corruption of the composite image as the images from the different echoes are properly aligned. The improved detection of molecularly targeted MPIO easily compensates for the scan time penalty of 14% incurred by the B0 stabilisation method employed. Respiration gating of the B0 measurement and the MRI scan was required to preserve high resolution detail, especially towards the back of the brain. CONCLUSIONS: High resolution imaging for the detection of molecularly targeted iron oxide particles in the mouse brain requires good stabilisation of the main B0 field, and can benefit from a respiration gated image acquisition strategy.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos Férricos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Animais , Feminino , Processamento de Imagem Assistida por Computador , Inflamação , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C
16.
Cancer Res ; 80(24): 5642-5655, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106335

RESUMO

Astrocytes are thought to play a pivotal role in coupling neural activity and cerebral blood flow. However, it has been shown that astrocytes undergo morphologic changes in response to brain metastasis, switching to a reactive phenotype, which has the potential to significantly compromise cerebrovascular function and contribute to the neurological sequelae associated with brain metastasis. Given that STAT3 is a key regulator of astrocyte reactivity, we aimed here to determine the impact of STAT3-mediated astrocyte reactivity on neurovascular function in brain metastasis. Rat models of brain metastasis and ciliary neurotrophic factor were used to induce astrocyte reactivity. Multimodal imaging, electrophysiology, and IHC were performed to determine the relationship between reactive astrocytes and changes in the cerebrovascular response to electrical and physiological stimuli. Subsequently, the STAT3 pathway in astrocytes was inhibited with WP1066 to determine the role of STAT3-mediated astrocyte reactivity, specifically, in brain metastasis. Astrocyte reactivity associated with brain metastases impaired cerebrovascular responses to stimuli at both the cellular and functional level and disrupted astrocyte-endothelial interactions in both animal models and human brain metastasis samples. Inhibition of STAT3-mediated astrocyte reactivity in rats with brain metastases restored cerebrovascular function, as shown by in vivo imaging, and limited cerebrovascular changes associated with tumor growth. Together these findings suggest that inhibiting STAT3-mediated astrocyte reactivity may confer significant improvements in neurological outcome for patients with brain metastases and could potentially be tested in other brain tumors. SIGNIFICANCE: These findings demonstrate that selectively targeting STAT3-mediated astrocyte reactivity ameliorates the cerebrovascular dysfunction associated with brain metastasis, providing a potential therapeutic avenue for improved patient outcome.


Assuntos
Astrócitos/patologia , Neoplasias Encefálicas/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Astrócitos/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Circulação Cerebrovascular , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Feminino , Humanos , Imagem de Contraste de Manchas a Laser , Espectroscopia de Ressonância Magnética , Imagem Multimodal , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia , Piridinas/farmacologia , Ratos , Ratos Endogâmicos , Tirfostinas/farmacologia
17.
Prog Neurobiol ; 187: 101770, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001310

RESUMO

White matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated with WM plasticity measured by DTI. We combined DTI, immunohistochemistry and mRNA expression analysis and examined the effects of somatosensory experience in adult rats. First, we observed experience-induced DTI differences in WM and in grey matter structure. C-Fos mRNA expression, a marker of cortical activity, in the barrel cortex correlated with the MRI WM metrics, indicating that molecular correlates of cortical activity relate to macroscale measures of WM structure. Analysis of myelin-related genes revealed higher myelin basic protein (MBP) mRNA expression. Higher MBP protein expression was also found via immunohistochemistry in WM. Finally, unbiased RNA sequencing analysis identified 134 differentially expressed genes encoding proteins involved in functions related to cell proliferation and differentiation, regulation of myelination and neuronal activity modulation. In conclusion, macroscale measures of WM plasticity are supported by both molecular and cellular evidence and confirm that myelination is one of the underlying mechanisms.


Assuntos
Encéfalo , Bainha de Mielina , Plasticidade Neuronal/fisiologia , Percepção/fisiologia , Substância Branca , Animais , Imagem de Tensor de Difusão , Expressão Gênica , Masculino , Ratos , Ratos Long-Evans
19.
Elife ; 82019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31689177

RESUMO

The interactions of anterior temporal structures, and especially the amygdala, with the prefrontal cortex are pivotal to learning, decision-making, and socio-emotional regulation. A clear anatomical description of the organization and dissociation of fiber bundles linking anterior temporal cortex/amygdala and prefrontal cortex in humans is still lacking. Using diffusion imaging techniques, we reconstructed fiber bundles between these anatomical regions in human and macaque brains. First, by studying macaques, we assessed which aspects of connectivity known from tracer studies could be identified with diffusion imaging. Second, by comparing diffusion imaging results in humans and macaques, we estimated the patterns of fibers coursing between human amygdala and prefrontal cortex and compared them with those in the monkey. In posterior prefrontal cortex, we observed a prominent and well-preserved bifurcation of bundles into primarily two fiber systems-an amygdalofugal path and an uncinate path-in both species. This dissociation fades away in more rostral prefrontal regions.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Lobo Temporal/anatomia & histologia , Adulto , Tonsila do Cerebelo/fisiologia , Animais , Conectoma , Feminino , Humanos , Macaca mulatta , Masculino , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Adulto Jovem
20.
J Cereb Blood Flow Metab ; 39(8): 1557-1569, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29498562

RESUMO

Cerebral blood flow is an important parameter in many diseases and functional studies that can be accurately measured in humans using arterial spin labelling (ASL) MRI. However, although rat models are frequently used for preclinical studies of both human disease and brain function, rat CBF measurements show poor consistency between studies. This lack of reproducibility is due, partly, to the smaller size and differing head geometry of rats compared to humans, as well as the differing analysis methodologies employed and higher field strengths used for preclinical MRI. To address these issues, we have implemented, optimised and validated a multiphase pseudo-continuous ASL technique, which overcomes many of the limitations of rat CBF measurement. Three rat strains (Wistar, Sprague Dawley and Berlin Druckrey IX) were used, and CBF values validated against gold-standard autoradiography measurements. Label positioning was found to be optimal at 45°, while post-label delay was optimised to 0.55 s. Whole brain CBF measures were 109 ± 22, 111 ± 18 and 100 ± 15 mL/100 g/min by multiphase pCASL, and 108 ± 12, 116 ± 14 and 122 ± 16 mL/100 g/min by autoradiography in Wistar, SD and BDIX cohorts, respectively. Tumour model analysis shows that the developed methods also apply in disease states. Thus, optimised multiphase pCASL provides robust, reproducible and non-invasive measurement of CBF in rats.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Feminino , Ratos , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA