Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 123(4): 571-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21643817

RESUMO

Wild sorghums are extremely diverse phenotypically, genetically and geographically. However, there is an apparent lack of knowledge on the genetic structure and diversity of wild sorghum populations within and between various eco-geographical regions. This is a major obstacle to both their effective conservation and potential use in breeding programs. The objective of this study was to assess the genetic diversity and structure of wild sorghum populations across a range of eco-geographical conditions in Kenya. Sixty-two wild sorghum populations collected from the 4 main sorghum growing regions in Kenya were genotyped using 18 simple sequence repeat markers. The study showed that wild sorghum is highly variable with the Coast region displaying the highest diversity. Analysis of molecular variance showed a significant variance component within and among wild sorghum populations within regions. The genetic structure of wild sorghum populations indicated that gene flow is not restricted to populations within the same geographic region. A weak regional differentiation was found among populations, reflecting human intervention in shaping wild sorghum genetic structure through seed-mediated gene flow. The sympatric occurrence of wild and cultivated sorghums coupled with extensive seed-mediated gene flow, suggests a potential crop-to-wild gene flow and vice versa across the regions. Wild sorghum displayed a mixed mating system. The wide range of estimated outcrossing rates indicate that some environmental conditions may exist where self-fertilisation is favoured while others cross-pollination is more advantageous.


Assuntos
Ecótipo , Variação Genética , Genoma de Planta , Sorghum/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Fluxo Gênico , Genes de Plantas , Marcadores Genéticos , Genética Populacional , Geografia , Quênia , Repetições de Microssatélites , Fenótipo
2.
Theor Appl Genet ; 122(8): 1631-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360157

RESUMO

Knowledge of mating systems is required in order to understand the genetic composition and evolutionary potential of plant populations. Outcrossing in a population may co-vary with the ecological and historical factors influencing it. However, literature on the outcrossing rate is limited in terms of wild sorghum species coverage and eco-geographic reference. This study investigated the outcrossing rates in wild sorghum populations from different ecological conditions of Kenya. Twelve wild sorghum populations were collected in four sorghum growing regions. Twenty-four individuals per population were genotyped using six polymorphic simple sequence repeat (SSR) markers to compute their indirect equilibrium estimates of outcrossing rate as well as population structure. In addition, the 12 populations were planted in a field in a randomised block design with five replications. Their progeny (250 individuals per population) were genotyped with the six SSR markers to estimate multi-locus outcrossing rates. Equilibrium estimates of outcrossing rates ranged from 7.0 to 75.0%, while multi-locus outcrossing rates (t (m)) ranged from 8.9 to 70.0% with a mean of 49.7%, indicating that wild sorghum exhibits a mixed mating system. The wide range of estimated outcrossing rates in wild sorghum populations indicate that environmental conditions may exist under which fitness is favoured by outcrossing and others under which selfing is more advantageous. The genetic structure of the populations studied is concordant with that expected for a species displaying mixed mating system.


Assuntos
Meio Ambiente , Sorghum/genética , Sorghum/fisiologia , Genética Populacional , Genótipo , Geografia , Quênia , Repetições Minissatélites/genética , Reprodução/genética
3.
Evol Appl ; 9(10): 1241-1257, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27877203

RESUMO

Crop populations in smallholder farming systems are shaped by the interaction of biological, ecological, and social processes, occurring on different spatiotemporal scales. Understanding these dynamics is fundamental for the conservation of crop genetic resources. In this study, we investigated the processes involved in sorghum and pearl millet diversity dynamics on Mount Kenya. Surveys were conducted in ten sites distributed along two elevation transects and occupied by six ethnolinguistic groups. Varieties of both species grown in each site were inventoried and characterized using SSR markers. Genetic diversity was analyzed using both individual- and population-based approaches. Surveys of seed lot sources allowed characterizing seed-mediated gene flow. Past sorghum diffusion dynamics were explored by comparing Mount Kenya sorghum diversity with that of the African continent. The absence of structure in pearl millet genetic diversity indicated common ancestry and/or important pollen- and seed-mediated gene flow. On the contrary, sorghum varietal and genetic diversity showed geographic patterns, pointing to different ancestry of varieties, limited pollen-mediated gene flow, and geographic patterns in seed-mediated gene flow. Social and ecological processes involved in shaping seed-mediated gene flow are further discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA