Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30474255

RESUMO

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Assuntos
Cariótipo Anormal , Instabilidade Genômica , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Progéria/genética , Telomerase/genética , Homeostase do Telômero , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerase/metabolismo
2.
Biogerontology ; 20(3): 337-358, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31041622

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, premature ageing syndrome in children. HGPS is normally caused by a mutation in the LMNA gene, encoding nuclear lamin A. The classical mutation in HGPS leads to the production of a toxic truncated version of lamin A, progerin, which retains a farnesyl group. Farnesyltransferase inhibitors (FTI), pravastatin and zoledronic acid have been used in clinical trials to target the mevalonate pathway in HGPS patients to inhibit farnesylation of progerin, in order to reduce its toxicity. Some other compounds that have been suggested as treatments include rapamycin, IGF1 and N-acetyl cysteine (NAC). We have analysed the distribution of prelamin A, lamin A, lamin A/C, progerin, lamin B1 and B2 in nuclei of HGPS cells before and after treatments with these drugs, an FTI and a geranylgeranyltransferase inhibitor (GGTI) and FTI with pravastatin and zoledronic acid in combination. Confirming other studies prelamin A, lamin A, progerin and lamin B2 staining was different between control and HGPS fibroblasts. The drugs that reduced progerin staining were FTI, pravastatin, zoledronic acid and rapamycin. However, drugs affecting the mevalonate pathway increased prelamin A, with only FTI reducing internal prelamin A foci. The distribution of lamin A in HGPS cells was improved with treatments of FTI, pravastatin and FTI + GGTI. All treatments reduced the number of cells displaying internal speckles of lamin A/C and lamin B2. Drugs targeting the mevalonate pathway worked best for progerin reduction, with zoledronic acid removing internal progerin speckles. Rapamycin and NAC, which impact on the MTOR pathway, both reduced both pools of progerin without increasing prelamin A in HGPS cell nuclei.


Assuntos
Lamina Tipo A/metabolismo , Ácido Mevalônico/metabolismo , Progéria/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Humanos , Progéria/patologia
3.
Biogerontology ; 19(6): 579-602, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29907918

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.


Assuntos
Dano ao DNA/efeitos dos fármacos , Difosfonatos/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Genoma Humano/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Progéria/tratamento farmacológico , Sirolimo/uso terapêutico , Linhagem Celular , Ensaio Cometa , Difosfonatos/farmacologia , Quimioterapia Combinada , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Lamina Tipo A/genética , Laminas/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Mutação , Progéria/genética , Progéria/metabolismo , Processamento de Proteína Pós-Traducional , Sirolimo/farmacologia
4.
Adv Exp Med Biol ; 773: 263-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563352

RESUMO

The genomes of a wide range of different organisms are non-randomly organized within interphase nuclei. Chromosomes and genes can be moved rapidly, with direction, to new non-random locations within nuclei upon a stimulus such as a signal to initiate differentiation, quiescence or senescence, or also the application of heat or an infection with a pathogen. It is now becoming increasingly obvious that chromosome and gene position can be altered in diseases such as cancer and other syndromes that are affected by changes to nuclear architecture such as the laminopathies. This repositioning seems to affect gene expression in these cells and may play a role in progression of the disease. We have some evidence in breast cancer cells and in the premature aging disease Hutchinson-Gilford Progeria that an aberrant nuclear envelope may lead to genome repositioning and correction of these nuclear envelope defects can restore proper gene positioning and expression in both disease situations.Although spatial positioning of the genome probably does not entirely control expression of genes, it appears that spatio-epigenetics may enhance the control over gene expression globally and/or is deeply involved in regulating specific sets of genes. A deviation from normal spatial positioning of the genome for a particular cell type could lead to changes that affect the future health of the cell or even an individual.


Assuntos
Envelhecimento/genética , Núcleo Celular/metabolismo , Cromossomos Humanos , Infecções/genética , Interfase , Neoplasias/genética , Humanos , Lamina Tipo A/genética , Mutação
5.
Front Cell Dev Biol ; 9: 640200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113611

RESUMO

This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1ß (NM1ß). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1ß (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1ß within senescent HDFs.

6.
Biochem Soc Trans ; 38(Pt 1): 287-91, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20074076

RESUMO

HGPS (Hutchinson-Gilford progeria syndrome) is a rare genetic disease affecting children causing them to age and die prematurely. The disease is typically due to a point mutation in the coding sequence for the nuclear intermediate-type filament protein lamin A and gives rise to a dominant-negative splice variant named progerin. Accumulation of progerin within nuclei causes disruption to nuclear structure, causes and premature replicative senescence and increases apoptosis. Now it appears that accumulation of progerin may have more widespread effects than previously thought since the demonstration that the presence and distribution of some nucleolar proteins are also adversely affected in progeria cells. One of the major breakthroughs both in the lamin field and for this syndrome is that many of the cellular defects observed in HGPS patient cells and model systems can be restored after treatment with a class of compounds known as FTIs (farnesyltransferase inhibitors). Indeed, it is demonstrated that FTI-277 is able to completely restore nucleolar antigen localization in treated progeria cells. This is encouraging news for the HGPS patients who are currently undergoing clinical trials with FTI treatment.


Assuntos
Nucléolo Celular/metabolismo , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Metionina/análogos & derivados , Progéria/tratamento farmacológico , Progéria/genética , Criança , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Ensaios Clínicos como Assunto , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Metionina/uso terapêutico , Progéria/metabolismo , Progéria/fisiopatologia
7.
Biochem Soc Trans ; 36(Pt 6): 1389-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021561

RESUMO

The laminopathy Hutchinson-Gilford progeria syndrome (HGPS) is caused by the mutant lamin A protein progerin and leads to premature aging of affected children. Despite numerous cell biological and biochemical insights into the basis for the cellular abnormalities seen in HGPS, the mechanism linking progerin to the organismal phenotype is not fully understood. To begin to address the mechanism behind HGPS using Drosophila melanogaster, we have ectopically expressed progerin and lamin A. We found that ectopic progerin and lamin A phenocopy several effects of laminopathies in developing and adult Drosophila, but that progerin causes a stronger phenotype than wild-type lamin A.


Assuntos
Drosophila melanogaster/metabolismo , Progéria/patologia , Animais , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Modelos Animais de Doenças , Drosophila melanogaster/embriologia , Lamina Tipo A/metabolismo , Longevidade
8.
Biochem Soc Trans ; 36(Pt 6): 1384-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021560

RESUMO

Rapid interphase chromosome territory repositioning appears to function through the action of nuclear myosin and actin, in a nuclear motor complex. We have found that chromosome repositioning when cells leave the cell cycle is not apparent in cells that have mutant lamin A or that are lacking emerin. We discuss the possibility that there is a functional intranuclear complex comprising four proteins: nuclear actin, lamin A, emerin and nuclear myosin. If any of the components are lacking or aberrant, then the nuclear motor complex involved in moving chromosomes or genes will be dysfunctional, leading to an inability to move chromosomes in response to signalling events.


Assuntos
Núcleo Celular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Animais , Posicionamento Cromossômico , Humanos
9.
Aging Cell ; 6(2): 139-53, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17274801

RESUMO

A number of diseases associated with specific tissue degeneration and premature aging have mutations in the nuclear envelope proteins A-type lamins or emerin. Those diseases with A-type lamin mutation are inclusively termed laminopathies. Due to various hypothetical roles of nuclear envelope proteins in genome function we investigated whether alterations to normal genomic behaviour are apparent in cells with mutations in A-type lamins and emerin. Even though the distributions of these proteins in proliferating laminopathy fibroblasts appear normal, there is abnormal nuclear positioning of both chromosome 18 and 13 territories, from the nuclear periphery to the interior. This genomic organization mimics that found in normal nonproliferating quiescent or senescent cells. This finding is supported by distributions of modified pRb in the laminopathy cells. All laminopathy cell lines tested and an X-linked Emery-Dreifuss muscular dystrophy cell line also demonstrate increased incidences of apoptosis. The most extreme cases of apoptosis occur in cells derived from diseases with mutations in the tail region of the LMNA gene, such as Dunningan-type familial partial lipodystrophy and mandibuloacral dysplasia, and this correlates with a significant level of micronucleation in these cells.


Assuntos
Senilidade Prematura/genética , Apoptose , Fibroblastos/ultraestrutura , Genoma Humano , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Senilidade Prematura/patologia , Linhagem Celular , Proliferação de Células , Humanos , Lipodistrofia Parcial Familiar/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Membrana Nuclear/ultraestrutura
10.
FEBS J ; 274(6): 1354-61, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17489093

RESUMO

The inner face of the nuclear envelope of metazoan cells is covered by a thin lamina consisting of a one-layered network of intermediate filaments interconnecting with a complex set of transmembrane proteins and chromatin associating factors. The constituent proteins, the lamins, have recently gained tremendous recognition, because mutations in the lamin A gene, LMNA, are the cause of a complex group of at least 10 different diseases in human, including the Hutchinson-Gilford progeria syndrome. The analysis of these disease entities has made it clear that besides cytoskeletal functions, the lamina has an important role in the "behaviour" of the genome and is, probably as a consequence of this function, intimately involved in cell fate decisions. Furthermore, these functions are related to the involvement of lamins in organizing the position and functional state of interphase chromosomes as well as to the occurrence of lamins and lamina-associated proteins within the nucleoplasm. However, the structural features of these lamins and the nature of the factors that assist them in genome organization present an exciting challenge to modern biochemistry and cell biology.


Assuntos
Genoma , Lâmina Nuclear/metabolismo , Conformação Proteica , Proteínas/química
11.
Ann N Y Acad Sci ; 1100: 250-63, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17460187

RESUMO

The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Envelhecimento , Animais , Nucléolo Celular/metabolismo , Proliferação de Células , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Modelos Animais de Doenças , Genoma , Humanos , Leucemia Promielocítica Aguda/metabolismo , Camundongos , Modelos Biológicos , Matriz Nuclear/metabolismo , Telômero/ultraestrutura
12.
Aging Cell ; 4(5): 247-55, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16164424

RESUMO

We have examined the relationship between nucleotide excision of the main UV-induced photoproduct, the cyclobutane pyrimidine dimer and in vitro cellular senescence. An in situ semiquantitative immunocytochemical assay has demonstrated that, following a UV-C dose of 15 J m-2, young human dermal fibroblasts maintained in a high level of serum are more efficient than senescent fibroblasts in the removal of dimers. However, in G0-arrested cultures (serum-starved), young fibroblasts are compromised in their ability to remove dimers and are significantly less efficient than senescent cells in this process. Supplementation of the culture medium with 0.1 mm deoxyribonucleosides enhances the removal of dimers in both young and senescent fibroblasts in proliferating or serum-starved cells. These data indicate that overall there is a modest but significant reduction in nucleotide excision of dimer photoproducts in cells as they age in vitro. In addition, G0-arrested young cells exhibit reduced removal of dimers, although this can be complemented by deoxyribonucleoside addition. In addition, this in situ assay has revealed heterogeneity in both susceptibility to UV-C-induced damage and excision. Overall, we provide evidence of reduced UV-induced damage excision in senescent compared with young fibroblasts, and demonstrate modulation of these processes in young and senescent cells under specific growth conditions.


Assuntos
Senescência Celular , Reparo do DNA , Derme/citologia , Fibroblastos/fisiologia , Dímeros de Pirimidina , Biomarcadores , Células Cultivadas , Meios de Cultura/química , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleosídeos/metabolismo , Relação Dose-Resposta à Radiação , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Humanos , Masculino , Reprodutibilidade dos Testes , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A
13.
Mech Ageing Dev ; 126(6-7): 664-72, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15888320

RESUMO

A major cause of ageing is thought to be the accumulation of damage to macromolecules. Accumulation to DNA damage in cells therefore presupposes that aged cells are unable to repair this damage. We have used the in vitro model of cellular ageing to test the idea that senescent cells are deficient in some aspect of DNA repair. Using the alkaline single cell gel electrophoresis assay (comet assay), we have determined the responses of young and senescent human dermal fibroblasts to DNA damage caused by exposure to UVC light. At low doses of UVC, senescent cells generate smaller comets than young cells whilst at medium doses the situation is reversed. At high doses, young and senescent cells respond similarly to one another. Time course experiments revealing repair of DNA damage show that senescent cells generate larger comets than young cells at early stages of repair suggesting that either senescent cells bear more damage per genome than do young cells or that senescent cells are more efficient at excising bulky adducts from DNA. Cells maintained in low levels of serum irrespective of age are less able to repair DNA damage compared with cells maintained in high levels of serum, and furthermore young and senescent cells maintained in high levels of serum are equally able to repair DNA damage. Our data, therefore, reveal both age-dependent and age-independent responses to UV-induced DNA damage. Use of the comet assay highlights the heterogeneity of cellular responses to genotoxic stress.


Assuntos
Senescência Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Derme/metabolismo , Fibroblastos/metabolismo , Raios Ultravioleta , Células Cultivadas , Ensaio Cometa , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Derme/citologia , Fibroblastos/citologia , Humanos
14.
Nucleus ; 6(6): 490-506, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26652669

RESUMO

Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo , Sirolimo/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fator Inibidor de Leucemia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT5/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/genética , Regulação para Cima/efeitos dos fármacos
15.
Exp Gerontol ; 39(5): 717-24, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15130666

RESUMO

Hutchinson-Gilford progeria syndrome is a rare genetic disorder that mimics certain aspects of aging prematurely. Recent work has revealed that mutations in the lamin A gene are a cause of the disease. We show here that cellular aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by a period of hyperproliferation and terminates with a large increase in the rate of apoptosis. The occurrence of cells with abnormal nuclear morphology reported by others is shown to be a result of cell division since the fraction of these abnormalities increases with cellular age. Similarly, the proportion of cells with an abnormal or absent A-type lamina increases with age. These data provide clues as to the cellular basis for premature aging in HGPS and support the view that cellular senescence and tissue homeostasis are important factors in the normal aging process.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Fibroblastos/fisiologia , Progéria/fisiopatologia , Núcleo Celular/patologia , Células Cultivadas , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Lamina Tipo A/genética , Lâmina Nuclear/fisiologia , Progéria/genética , Progéria/patologia
17.
Genome Biol ; 12(8): R74, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21838864

RESUMO

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing syndrome that affects children leading to premature death, usually from heart infarction or strokes, making this syndrome similar to normative ageing. HGPS is commonly caused by a mutation in the A-type lamin gene, LMNA (G608G). This leads to the expression of an aberrant truncated lamin A protein, progerin. Progerin cannot be processed as wild-type pre-lamin A and remains farnesylated, leading to its aberrant behavior during interphase and mitosis. Farnesyltransferase inhibitors prevent the accumulation of farnesylated progerin, producing a less toxic protein. RESULTS: We have found that in proliferating fibroblasts derived from HGPS patients the nuclear location of interphase chromosomes differs from control proliferating cells and mimics that of control quiescent fibroblasts, with smaller chromosomes toward the nuclear interior and larger chromosomes toward the nuclear periphery. For this study we have treated HGPS fibroblasts with farnesyltransferase inhibitors and analyzed the nuclear location of individual chromosome territories. We have found that after exposure to farnesyltransferase inhibitors mis-localized chromosome territories were restored to a nuclear position akin to chromosomes in proliferating control cells. Furthermore, not only has this treatment afforded chromosomes to be repositioned but has also restored the machinery that controls their rapid movement upon serum removal. This machinery contains nuclear myosin 1ß, whose distribution is also restored after farnesyltransferase inhibitor treatment of HGPS cells. CONCLUSIONS: This study not only progresses the understanding of genome behavior in HGPS cells but demonstrates that interphase chromosome movement requires processed lamin A.


Assuntos
Cromossomos Humanos/genética , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Progéria/genética , Senilidade Prematura/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromossomos Humanos/efeitos dos fármacos , Farnesiltranstransferase/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mitose/efeitos dos fármacos , Mortalidade Prematura , Mutação/efeitos dos fármacos , Progéria/patologia
18.
Nucleus ; 2(6): 517-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22064469

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a severe premature aging syndrome that affects children. These children display characteristics associated with normal aging and die young usually from cardiovascular problems or stroke. Classical HGPS is caused by mutations in the gene encoding the nuclear structural protein lamin A. This mutation leads to a novel version of lamin A that retains a farnesyl group from its processing. This protein is called Progerin and is toxic to cellular function. Pre-lamin A is an immature version of lamin A and also has a farnesylation modification, which is cleaved in the maturation process to create lamin A.


Assuntos
Pesquisa Biomédica , Mutação , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Precursores de Proteínas/metabolismo , Universidades , Inglaterra , Humanos , Lamina Tipo A , Proteínas Nucleares/genética , Progéria/genética , Precursores de Proteínas/genética
19.
Biogerontology ; 10(3): 285-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19115081

RESUMO

The kinetics of replicative senescence have been determined in three independent cultures of fibroblasts derived from Fischer rat embryos (FREF). In each case the growth fraction was measured by immunocytochemical staining for proliferating cell nuclear antigen (PCNA) and by metabolic labeling using bromodeoxyuridine (BrdU). FREF cultures entered senescence at an average of 20.4 population doublings. The growth fraction declined smoothly as measured by both kinetic techniques. The average rate of decline of the growth fraction observed using BrdU was -0.79 +/- 0.12% population doubling(-1) which was closely comparable to the loss of PCNA reactivity (-0.80 +/- 0.11% population doubling(-1)). We conclude that senescence in FREF cultures occurs as the result of a progressive loss of the culture growth fraction rather than a sudden abrupt collapse.


Assuntos
Proliferação de Células , Senescência Celular , Fibroblastos/fisiologia , Animais , Bromodesoxiuridina/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Cinética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Endogâmicos F344
20.
Exp Cell Res ; 292(1): 179-86, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14720517

RESUMO

The nucleolus is the site of ribosomal gene transcription, processing of rRNA transcripts and maturation of preribosomal particles. Recent studies have shown that nucleoli are also involved in processes as diverse as aging, proliferation control, stress response and mitotic regulation. The proliferation-dependent nucleolar antigen pKi-67 is a sensitive marker of both proliferative activity and nucleolar integrity. We show that staining for the nucleolar-associated antigen pKi-67 is lost from nucleoli during growth arrest following UV irradiation. Surprisingly, before cells enter growth arrest, Ki-67 staining translocates from nucleolar to nucleoplasmic sites within 4-6 h of irradiation. Ki-67 redistribution is accompanied by segregation of nucleolar components. The timing of p53 response correlates well with pKi-67 translocation, growth arrest and restoration of proliferation. However, nucleolar segregation and pKi-67 translocation occur in the absence of functional p53 and other components of damage response pathways (DNA-PK, CSA, CSB, XPA, XPC, ATM ATR, p38(MAPK) and MEK1). Neither gamma-irradiation nor H(2)O(2) treatment causes pKi-67 translocation or loss of nucleolar integrity. In marked contrast, treatment of cells with UV-mimetic 4-NQO does induce nucleolar disruption and relocalisation of pKi-67, suggesting that bulky adduct formation in rDNA rather than strand breaks is sufficient to cause nucleolar segregation. Our data reveal a previously unrecognized cellular response to genotoxic stress and may reveal novel pathways leading to growth arrest.


Assuntos
Antígenos/metabolismo , Nucléolo Celular/metabolismo , Dano ao DNA/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , 4-Nitroquinolina-1-Óxido/toxicidade , Biomarcadores , Divisão Celular , Linhagem Celular , Linhagem Celular Tumoral , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/imunologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Antígeno Ki-67/metabolismo , Mutagênicos/toxicidade , Pele/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA