Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 115(5): 1536-1550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433313

RESUMO

Ovarian cancer is a lethal gynecologic cancer mostly diagnosed in an advanced stage with an accumulation of ascites. Interleukin-6 (IL-6), a pro-inflammatory cytokine is highly elevated in malignant ascites and plays a pleiotropic role in cancer progression. Mitochondria are dynamic organelles that undergo fission and fusion in response to external stimuli and dysregulation in their dynamics has been implicated in cancer progression and metastasis. Here, we investigate the effect of IL-6 on mitochondrial dynamics in ovarian cancer cells (OVCs) and its impact on metastatic potential. Treatment with IL-6 on ovarian cancer cell lines (SKOV3 and PA-1) led to an elevation in the metastatic potential of OVCs. Interestingly, a positive association was observed between dynamin-related protein 1 (Drp1), a regulator of mitochondrial fission, and IL-6R in metastatic ovarian cancer tissues. Additionally, IL-6 treatment on OVCs was linked to the activation of Drp1, with a notable increase in the ratio of the inhibitory form p-Drp1(S637) to the active form p-Drp1(S616), indicating enhanced mitochondrial fission. Moreover, IL-6 treatment triggered the activation of ERK1/2, and inhibiting ERK1/2 mitigated IL-6-induced mitochondrial fission. Suppressing mitochondrial fission through siRNA transfection and a pharmacological inhibitor reduced the IL-6-induced migration and invasion of OVCs. This was further supported by 3D invasion assays using patient-derived spheroids. Altogether, our study suggests the role of mitochondrial fission in the metastatic potential of OVCs induced by IL-6. The inhibition of mitochondrial fission could be a potential therapeutic approach to suppress the metastasis of ovarian cancer.


Assuntos
Dinaminas , Interleucina-6 , Sistema de Sinalização das MAP Quinases , Dinâmica Mitocondrial , Neoplasias Ovarianas , Humanos , Feminino , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Interleucina-6/metabolismo , Dinaminas/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metástase Neoplásica , Mitocôndrias/metabolismo , Receptores de Interleucina-6/metabolismo , Movimento Celular/efeitos dos fármacos
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673870

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are widely used in versatile applications, from high technology to household products. While numerous studies have examined the toxic gene profile of ZnO NPs across various tissues, the specific lipid species associated with adverse effects and potential biomarkers remain elusive. In this study, we conducted a liquid chromatography-mass spectrometry based lipidomics analysis to uncover potential lipid biomarkers in human kidney cells following treatment with ZnO NPs. Furthermore, we employed lipid pathway enrichment analysis (LIPEA) to elucidate altered lipid-related signaling pathways. Our results demonstrate that ZnO NPs induce cytotoxicity in renal epithelial cells and modulate lipid species; we identified 64 lipids with a fold change (FC) > 2 and p < 0.01 with corrected p < 0.05 in HK2 cells post-treatment with ZnO NPs. Notably, the altered lipids between control HK2 cells and those treated with ZnO NPs were associated with the sphingolipid, autophagy, and glycerophospholipid pathways. This study unveils novel potential lipid biomarkers of ZnO NP nanotoxicity, representing the first lipidomic profiling of ZnO NPs in human renal epithelial cells.


Assuntos
Rim , Metabolismo dos Lipídeos , Lipidômica , Óxido de Zinco , Óxido de Zinco/toxicidade , Humanos , Lipidômica/métodos , Rim/metabolismo , Rim/efeitos dos fármacos , Linhagem Celular , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Lipídeos/química , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Biomarcadores/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Ann Bot ; 131(5): 751-767, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36469429

RESUMO

BACKGROUND AND AIMS: The evolution of mating systems from outcrossing to self-fertilization is a common transition in flowering plants. This shift is often associated with the 'selfing syndrome', which is characterized by less visible flowers with functional changes to control outcrossing. In most cases, the evolutionary history and demographic dynamics underlying the evolution of the selfing syndrome remain poorly understood. METHODS: Here, we characterize differences in the demographic genetic consequences and associated floral-specific traits between two distinct geographical groups of a wild shrub, Daphne kiusiana, endemic to East Asia; plants in the eastern region (southeastern Korea and Kyushu, Japan) exhibit smaller and fewer flowers compared to those of plants in the western region (southwestern Korea). Genetic analyses were conducted using nuclear microsatellites and chloroplast DNA (multiplexed phylogenetic marker sequencing) datasets. KEY RESULTS: A high selfing rate with significantly increased homozygosity characterized the eastern lineage, associated with lower levels of visibility and herkogamy in the floral traits. The two lineages harboured independent phylogeographical histories. In contrast to the western lineage, the eastern lineage showed a gradual reduction in the effective population size with no signs of a severe bottleneck despite its extreme range contraction during the last glacial period. CONCLUSIONS: Our results suggest that the selfing-associated morphological changes in D. kiusiana are of relatively old origin (at least 100 000 years ago) and were driven by directional selection for efficient self-pollination. We provide evidence that the evolution of the selfing syndrome in D. kiusiana is not strongly associated with a severe population bottleneck.


Assuntos
Daphne , Filogenia , Reprodução , Polinização , Autofertilização/genética , Demografia , Flores/genética , Flores/anatomia & histologia , Evolução Biológica
4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003491

RESUMO

The increasing frequency of processed food consumption has led to the higher ingestion of sugar, increasing the risk of chronic diseases, such as obesity. Yeast hydrolysates (YHs) inhibit body fat accumulation. However, the action mechanism of YH in relation to high-sugar diet-induced obesity is still unclear. Therefore, this study aimed to evaluate the biological effects of YH on lipid accumulation and verify behavioral changes and carbohydrate metabolic gene regulation in high-sugar diet-fed fruit flies. Adult male flies (Drosophila melanogaster; 2-5 days old) were exposed to 20% sucrose for obesity induction. In high-sugar-fed Drosophila, the effect of YH was compared with that of yeast extract. The effects of YH on body conditions and lipid droplet size were quantified and analyzed. Behavioral factors were evaluated by analyzing circadian rhythm patterns and neurotransmitter content, and a molecular approach was used to analyze the expression of metabolism-related genes. Dietary supplementation with YH did not reduce total sugar content, but significantly decreased the triglyceride (TG) levels in Drosophila. A behavioral analysis showed that the total number of night-time activities increased significantly with YH treatment in a dose-dependent manner. In addition, YH effectively regulated the gene expression of insulin-like peptides related to carbohydrate metabolism as well as genes related to lipogenesis. The TG content was significantly reduced at a YH concentration of 0.5%, confirming that the active compound in YH effectively suppresses fat accumulation. These findings support that YH is a potential anti-obesity food material via regulating carbohydrate metabolism in Drosophila.


Assuntos
Drosophila melanogaster , Drosophila , Masculino , Animais , Drosophila/genética , Drosophila melanogaster/metabolismo , Obesidade/genética , Obesidade/metabolismo , Leveduras , Sacarose/metabolismo , Dieta , Lipídeos
5.
FASEB J ; 35(4): e21334, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715200

RESUMO

Sepsis and sepsis-associated lung inflammation significantly contribute to the morbidity and mortality of critical illness. Here, we examined the hypothesis that neuronal guidance proteins could orchestrate inflammatory events during endotoxin-induced lung injury. Through a targeted array, we identified netrin-1 as the top upregulated neuronal guidance protein in macrophages treated with lipopolysaccharide (LPS). Furthermore, we found that netrin-1 is highly enriched in infiltrating myeloid cells, particularly in macrophages during LPS-induced lung injury. Transcriptional studies implicate hypoxia-inducible factor HIF-1α in the transcriptional induction of netrin-1 during LPS treatment. Subsequently, the deletion of netrin-1 in the myeloid compartment (Ntn1loxp/loxp LysM Cre) resulted in exaggerated mortality and lung inflammation. Surprisingly, further studies revealed enhanced natural killer cells (NK cells) infiltration in Ntn1loxp/loxp LysM Cre mice, and neutralization of NK cell chemoattractant chemokine (C-C motif) ligand 2 (CCL2) reversed the exaggerated lung inflammation. Together, these studies provide functional insight into myeloid cell-derived netrin-1 in controlling lung inflammation through the modulation of CCL2-dependent infiltration of NK cells.


Assuntos
Endotoxinas/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Matadoras Naturais/fisiologia , Lesão Pulmonar/induzido quimicamente , Netrina-1/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos , Células Mieloides/efeitos dos fármacos , Netrina-1/genética , Neutrófilos/fisiologia , Regulação para Cima
6.
Graefes Arch Clin Exp Ophthalmol ; 259(9): 2723-2730, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33963918

RESUMO

PURPOSE: To determine the influence of mild non-foveal involving epiretinal membrane (ERM) on visual outcome in eyes with multifocal intraocular lens (MIOL) implantation. METHODS: Patients with history of MIOL implantation were screened for the presence of ERM using spectral-domain optical coherence tomography (SD-OCT) at postoperative 6 months. Ninety-one eyes with mild non-foveal involving ERM and history of MIOL implantation were compared with 83 age-matched controls without ERM and history of MIOL implantation. The visual acuity (corrected and uncorrected) and visual quality (contrast sensitivity, Strehl ratio, area ratio, and higher-order aberrations; HOAs) of the eyes with mild non-foveal involving ERM were compared with the data of the age-matched control group. RESULTS: There was no difference in visual acuity between the groups at baseline and postoperative 6 months. The mild non-foveal involving ERM group showed significantly low contrast sensitivity at a visual angle of 4.0°, 2.5°, 1.0°, and 0.64° under scotopic conditions (P = .048, P = .025, P = .003, and P = .02, respectively) and 4.0°, 1.0°, and 0.64° under photopic conditions (P = .028, P = .002, and P = .001, respectively). The mean area ratio of the mild non-foveal involving ERM group was 45.13 ± 10.93, which was significantly lower than that of the control group, which measured 50.34 ± 12.66 (P = .044). CONCLUSION: A mild non-foveal involving ERM has no effect on visual acuity, but it reduces visual quality in eyes with MIOL implantation. A thorough screening using SD-OCT is warranted for this condition when considering MIOL implantation.


Assuntos
Membrana Epirretiniana , Lentes Intraoculares Multifocais , Sensibilidades de Contraste , Membrana Epirretiniana/diagnóstico , Membrana Epirretiniana/cirurgia , Humanos , Implante de Lente Intraocular , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual
7.
J Avian Med Surg ; 33(2): 115-122, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251498

RESUMO

This study was conducted to compare the effects of 3 different sedative agents on electroretinography (ERG) in domestic pigeons (Columba livia). Six pigeons were sedated with alfaxalone, xylazine, and medetomidine at separate times with a 1-week washout period between sedative administration. After sedation with each agent, pigeons underwent the modified ERG protocol adapted from the standardized protocol for dogs. The scotopic mixed rod and cone response was recorded after 20 minutes of dark adaptation, and the photopic cone response and photopic flicker response were recorded after 10 minutes of light adaptation. Either a 1-way analysis of variance or a Kruskall-Wallis test was used to compare the a-wave and b-wave implicit time and amplitude. No significant differences were observed in the scotopic mixed rod and cone response among all 3 sedatives used. Compared with alfaxalone, medetomidine significantly prolonged the a-wave implicit time, depressed the b-wave amplitude of photopic cone response, and prolonged the peak implicit time of the photopic flicker response (P < .05). These results show that medetomidine has a depressant effect on photopic ERG in pigeons at a dosage that produces light sedation.


Assuntos
Columbidae , Eletrorretinografia/veterinária , Medetomidina/farmacologia , Pregnanodionas/farmacologia , Xilazina/farmacologia , Anestésicos/farmacologia , Animais , Estudos Cross-Over , Hipnóticos e Sedativos/farmacologia
8.
Mol Carcinog ; 57(2): 235-242, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29024042

RESUMO

Obesity is a serious health problem and critically related to poor prognosis in cancer, presumably through induction of chronic inflammation. The major culprit for cancer progression in obesity is presumed to be macrophages. Accumulation of macrophages in adipose tissue due to obesity induced chronic inflammation has been observed. However, obesity-induced macrophage accumulation related to ovarian cancer progression remains unclear. So, the role of macrophage in cancer progression is needed to be further defined for therapeutic intervention. Here we determined the effect of macrophage type 1 (M1 macrophage) on ovarian cancer cells in relation to the metastasis. Ovarian cancer cell lines (PA-1, SKOV3) and monocyte-derived macrophages were used in this study. Treatment with M1 macrophage conditioned media on ovarian cancer cells increased the metastatic potential, such as migration and invasion capabilities. Interestingly, upon treatment with M1 macrophage conditioned media, nuclear translocation of NF-κB, p60, and p50, from the cytosol was enhanced together with increased transcriptional activity of the NF-κB. Pre-treatment with TPCK (NF-κB inhibitor) and NF-κB siRNA on ovarian cancer cells suppressed M1 macrophage-induced metastatic potential. Furthermore, Treatment of TNF-α on ovarian cancer cells showed NF-κB activation. Co-treatment with TNF-α inhibitor, etanercept, and M1 macrophage conditioned media on ovarian cancer cell lines reversed M1 macrophage conditioned media induced NF-κB activation. Taken together, TNF-α released from M1 macrophage increased metastatic potential in ovarian cancer cells through the activation of NF-κB signaling pathway. These results provide a new insight into the critical role of M1 macrophage in the tumor microenvironment in ovarian cancer.


Assuntos
Inflamação/patologia , Macrófagos/patologia , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Neoplasias Ovarianas/genética , Transdução de Sinais , Transcrição Gênica/genética , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Cancer Sci ; 107(9): 1173-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27297561

RESUMO

Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease. Over the past decade, increasing attention has been given to the characterization of components of ascites and their role in the progression of ovarian cancer, the most malignant gynecologic cancer in women. This review will discuss the role of ascites in disease progression, in terms of modulating cancer cell behavior and contributing to tumor heterogeneity.


Assuntos
Ascite/patologia , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Animais , Ascite/metabolismo , Biomarcadores Tumorais , Comunicação Celular , Progressão da Doença , Feminino , Humanos , Terapia de Alvo Molecular , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Medicina de Precisão , Prognóstico
10.
Mol Carcinog ; 55(4): 346-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25663310

RESUMO

Metformin, an oral biguanide for the treatment of type II diabetes, has been shown to have anticancer effects in ovarian cancer. Energy starvation induced by metformin causes endoplasmic reticulum stress-mediated unfolded protein response (UPR) and autophagy. UPR and autophagy act as a survival or death mechanism in cells. In this study, we observed that metformin-induced apoptosis was relieved by autophagy and the PERK/eIF2α pathway in ovarian cancer cells, but not in peripheral blood mononuclear cells (PBMC) or 'normal' ovarian surface epithelial cells (OSE). Increased PARP cleavage and increased LC3B-II with ATG5-ATG12 complex suggested the induction of apoptosis and autophagy, respectively, in metformin-treated ovarian cancer cells. Accumulation of acidic vacuoles in the cytoplasm and downregulation of p62 further supported late-stage autophagy. Interestingly, metformin induced interdependent activation between autophagy and the UPR, especially the PERK/eIF2α pathway. Inhibition of autophagy-induced PERK inhibition, and vice versa, were demonstrated using small molecular inhibitors (PERK inhibitor I, GSK2606414; autophagy inhibitor, 3-MA, and BafA1). Moreover, autophagy and PERK activation protected ovarian cancer cells against metformin-induced apoptosis. Metformin treatment in the presence of inhibitors of PERK and autophagy, however, had no cytotoxic effects on OSE or PBMC. In conclusion, these results suggest that inhibition of autophagy and PERK can enhance the selective anticancer effects of metformin on ovarian cancer cells. © 2015 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , eIF-2 Quinase/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Mol Carcinog ; 55(5): 918-28, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25980682

RESUMO

Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Cell Biochem Funct ; 34(8): 563-571, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27859461

RESUMO

Subcutaneous and visceral adipose tissues show a different risk effect on metabolic disorders because they have distinct cellular properties. We isolated stem cells from the separate human adipose tissues to investigate that subcutaneous and visceral fat depots have metabolic differences. Adipose-derived stem cells (ASCs) were characterized by immunophenotype and differentiation potentials into adipogenic, osteogenic, and chondrogenic lineages. Although subcutaneous and visceral ASCs (S-ASC and V-ASC) express same surface markers (CD31- , CD34- , CD45- , CD73+ , CD90+ , and CD105+ ) and have differentiation potentials, S-ASCs had higher capacity to proliferate and to differentiate into adipogenic lineage than V-ASCs. Next, we identified that S-ASC and V-ASC were genetically distinct based on microarray analysis. Among a total of 810 genes detected in ASCs of both depots, the differentially expressed genes were involved in energy and lipid metabolism. These data show the existence of the intrinsic difference between S-ASC and V-ASC and suggest the differences of anatomically separated adipose tissue. On the basis of the differentially expressed gene profiles between S-ASC and V-ASC, we suggested significant evidence that adipose tissues originating from different anatomic regions are distinguished at the level of the undifferentiated stem cells such as mature adipocytes. V-ASCs had the upregulated clusters of genes related to lipid biosynthesis and metabolism. By contrast, S-ASCs highly expressed genes involved in DNA-dependent transcription, contributing to proliferation. We provide further insights for ASCs with the different origins to understand fat accumulation and distribution and a possibility of ASCs as a therapeutic target against metabolic disorders or cancer.


Assuntos
Perfilação da Expressão Gênica , Gordura Intra-Abdominal/citologia , Células-Tronco/metabolismo , Gordura Subcutânea/citologia , Adulto , Idoso , Separação Celular , Ontologia Genética , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Regulação para Cima/genética
13.
BMC Cancer ; 15: 85, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25881093

RESUMO

BACKGROUND: The extent to which metastatic tumors further evolve by accumulating additional mutations is unclear and has yet to be addressed extensively using next-generation sequencing of high-grade serous ovarian cancer. METHODS: Eleven spatially separated tumor samples from the primary tumor and associated metastatic sites and two normal samples were obtained from a Stage IIIC ovarian cancer patient during cytoreductive surgery prior to chemotherapy. Whole exome sequencing and copy number analysis were performed. Omental exomes were sequenced with a high depth of coverage to thoroughly explore the variants in metastatic lesions. Somatic mutations were further validated by ultra-deep targeted sequencing to sort out false positives and false negatives. Based on the somatic mutations and copy number variation profiles, a phylogenetic tree was generated to explore the evolutionary relationship among tumor samples. RESULTS: Only 6% of the somatic mutations were present in every sample of a given case with TP53 as the only known mutant gene consistently present in all samples. Two non-spatial clusters of primary tumors (cluster P1 and P2), and a cluster of metastatic regions (cluster M) were identified. The patterns of mutations indicate that cluster P1 and P2 diverged in the early phase of tumorigenesis, and that metastatic cluster M originated from the common ancestral clone of cluster P1 with few somatic mutations and copy number variations. CONCLUSIONS: Although a high level of intratumor heterogeneity was evident in high-grade serous ovarian cancer, our results suggest that transcoelomic metastasis arises with little accumulation of somatic mutations and copy number alterations in this patient.


Assuntos
Mutação , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Idoso , Carcinoma Epitelial do Ovário , Variações do Número de Cópias de DNA , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Modelos Biológicos , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias
14.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540217

RESUMO

Obesity is recognized as a significant risk factor for ovarian cancer, with accumulating evidence highlighting its impact on disease progression and chemoresistance. This review synthesizes current research elucidating the link between obesity-induced lysosomal dysfunction and ovarian cancer chemoresistance. Epidemiological studies consistently demonstrate a positive correlation between body mass index (BMI) and ovarian cancer risk, attributed in part to the predilection of epithelial ovarian cancer cells for adipose tissue, particularly the omentum. Adipokines released from the omentum contribute to cancer-associated characteristics, including energy supply to cancer cells. Moreover, obesity-induced alterations in lysosomal function have been implicated in systemic inflammation and lipid metabolism dysregulation, further exacerbating cancer progression. Lysosomes play a crucial role in drug resistance, as evidenced by studies demonstrating their involvement in mediating resistance to chemotherapy in ovarian cancer cells. Recent findings suggest that pharmacological inhibition of lysosomal calcium channels sensitizes drug-resistant ovarian cancer cells to cisplatin treatment, highlighting the therapeutic potential of targeting lysosomal dysfunction in obesity-related chemoresistance. This review underscores the importance of understanding the multifaceted roles of lysosomes in obesity-related drug resistance and their implications for the development of targeted therapeutic interventions in ovarian cancer management.

15.
Biomedicines ; 12(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672219

RESUMO

Pancreatic cancer is characterized by its high mortality rate and limited treatment options, often driven by oncogenic RAS mutations. In this study, we investigated the metabolomic profiles of pancreatic cancer cells based on their KRAS genetic status. Utilizing both KRAS-wildtype BxPC3 and KRAS-mutant PANC1 cell lines, we identified 195 metabolites differentially altered by KRAS status through untargeted metabolomics. Principal component analysis and hierarchical condition trees revealed distinct separation between KRAS-wildtype and KRAS-mutant cells. Metabolite set enrichment analysis highlighted significant pathways such as homocysteine degradation and taurine and hypotaurine metabolism. Additionally, lipid enrichment analysis identified pathways including fatty acyl glycosides and sphingoid bases. Mapping of identified metabolites to KEGG pathways identified nine significant metabolic pathways associated with KRAS status, indicating diverse metabolic alterations in pancreatic cancer cells. Furthermore, we explored the impact of TRPML1 inhibition on the metabolomic profile of KRAS-mutant pancreatic cancer cells. TRPML1 inhibition using ML-SI1 significantly altered the metabolomic profile, leading to distinct separation between vehicle-treated and ML-SI1-treated PANC1 cells. Metabolite set enrichment analysis revealed enriched pathways such as arginine and proline metabolism, and mapping to KEGG pathways identified 17 significant metabolic pathways associated with TRPML1 inhibition. Interestingly, some metabolites identified in PANC1 compared to BxPC3 were oppositely regulated by TRPML1 inhibition, suggesting their potential as biomarkers for KRAS-mutant cancer cells. Overall, our findings shed light on the distinct metabolite changes induced by both KRAS status and TRPML1 inhibition in pancreatic cancer cells, providing insights into potential therapeutic targets and biomarkers for this deadly disease.

16.
Cells ; 13(2)2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247807

RESUMO

BACKGROUND: The lysosome has emerged as a promising target for overcoming chemoresistance, owing to its role in facilitating the lysosomal sequestration of drugs. The lysosomal calcium channel TRPML1 not only influences lysosomal biogenesis but also coordinates both endocytosis and exocytosis. This study explored the modulation of cisplatin sensitivity by regulating TRPML1-mediated lysosomal exocytosis and identified the metabolomic profile altered by TRPML1 inhibition. METHODS: We used four types of ovarian cancer cells: two cancer cell lines (OVCAR8 and TOV21G) and two patient-derived ovarian cancer cells. Metabolomic analyses were conducted to identify altered metabolites by TRPML1 inhibition. RESULTS: Lysosomal exocytosis in response to cisplatin was observed in resistant cancer cells, whereas the phenomenon was absent in sensitive cancer cells. Through the pharmacological intervention of TRPML1, lysosomal exocytosis was interrupted, leading to the sensitization of resistant cancer cells to cisplatin treatment. To assess the impact of lysosomal exocytosis on chemoresistance, we conducted an untargeted metabolomic analysis on cisplatin-resistant ovarian cancer cells with TRPML1 inhibition. Among the 1446 differentially identified metabolites, we focused on 84 significant metabolites. Metabolite set analysis revealed their involvement in diverse pathways. CONCLUSIONS: These findings collectively have the potential to enhance our understanding of the interplay between lysosomal exocytosis and chemoresistance, providing valuable insights for the development of innovative therapeutic strategies.


Assuntos
Cisplatino , Exocitose , Neoplasias Ovarianas , Feminino , Humanos , Cisplatino/farmacologia , Lisossomos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Canais de Potencial de Receptor Transitório/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
17.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890953

RESUMO

Long-term hepatic damage is associated with human morbidity and mortality owing to numerous pathogenic factors. A variety of studies have focused on improving liver health using natural products and herbal medicines. We aimed to investigate the effect of enzyme-treated Zizania latifolia ethanol extract (ETZL), which increases the content of tricin via enzymatic hydrolysis, for 8 weeks on liver-related outcomes, lipid metabolism, antioxidant activity, and fatigue compared to a placebo. Healthy Korean adult males aged 19-60 years were randomized into ETZL treatment and placebo groups, and alcohol consumption was 24.96 and 28.64 units/week, respectively. Alanine transaminase, a blood marker associated with liver cell injury, significantly decreased after 8 weeks compared to the baseline in the ETZL treatment group (p = 0.004). After 8 weeks, the treatment group showed significant changes in the levels of high-density lipoprotein and hepatic steatosis index compared to the baseline (p = 0.028 and p = 0.004, respectively). ETZL treatment tended to reduce antioxidant-activity-related factors, total antioxidant status, and malondialdehyde, but there was no significant difference. In the multidimensional fatigue scale, ETZL treatment showed a significant reduction in general fatigue and total-fatigue-related values after 8 weeks compared to the baseline (p = 0.012 and p = 0.032, respectively). Taken together, the 8-week treatment of enzyme-treated Zizania latifolia ethanol extract demonstrated positive effects on liver-related outcomes, lipid metabolism, and mental fatigue without adverse effects on safety-related parameters.

18.
J Ovarian Res ; 17(1): 73, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566208

RESUMO

Ovarian cancer is a leading cause of death among gynecologic tumors, often detected at advanced stages. Metabolic reprogramming and increased lipid biosynthesis are key factors driving cancer cell growth. Stearoyl-CoA desaturase 1 (SCD1) is a crucial enzyme involved in de novo lipid synthesis, producing mono-unsaturated fatty acids (MUFAs). Here, we aimed to investigate the expression and significance of SCD1 in epithelial ovarian cancer (EOC). Comparative analysis of normal ovarian surface epithelial (NOSE) tissues and cell lines revealed elevated SCD1 expression in EOC tissues and cells. Inhibition of SCD1 significantly reduced the proliferation of EOC cells and patient-derived organoids and induced apoptotic cell death. Interestingly, SCD1 inhibition did not affect the viability of non-cancer cells, indicating selective cytotoxicity against EOC cells. SCD1 inhibition on EOC cells induced endoplasmic reticulum (ER) stress by activating the unfolded protein response (UPR) sensors and resulted in apoptosis. The addition of exogenous oleic acid, a product of SCD1, rescued EOC cells from ER stress-mediated apoptosis induced by SCD1 inhibition, underscoring the importance of lipid desaturation for cancer cell survival. Taken together, our findings suggest that the inhibition of SCD1 is a promising biomarker as well as a novel therapeutic target for ovarian cancer by regulating ER stress and inducing cancer cell apoptosis.


Assuntos
Neoplasias Ovarianas , Estearoil-CoA Dessaturase , Feminino , Humanos , Estearoil-CoA Dessaturase/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Carcinoma Epitelial do Ovário , Lipídeos
19.
Exp Mol Med ; 56(4): 1013-1026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38684915

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glutamina , Histona Desmetilases com o Domínio Jumonji , Neoplasias Pancreáticas , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Glutamina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Citoplasmática/genética , Animais , Regiões Promotoras Genéticas
20.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464103

RESUMO

Acute myocardial infarction stands as a prominent cause of morbidity and mortality worldwide1-6. Clinical studies have demonstrated that the severity of cardiac injury following myocardial infarction exhibits a circadian pattern, with larger infarct sizes and poorer outcomes in patients experiencing morning onset myocardial infarctions7-14. However, the molecular mechanisms that govern circadian variations of myocardial injury remain unclear. Here, we show that BMAL114-20, a core circadian transcription factor, orchestrates diurnal variability in myocardial injury. Unexpectedly, BMAL1 modulates circadian-dependent cardiac injury by forming a transcriptionally active heterodimer with a non-canonical partner, hypoxia-inducible factor 2 alpha (HIF2A)6,21-23, in a diurnal manner. Substantiating this finding, we determined the cryo-EM structure of the BMAL1/HIF2A/DNA complex, revealing a previously unknown capacity for structural rearrangement within BMAL1, which enables the crosstalk between circadian rhythms and hypoxia signaling. Furthermore, we identified amphiregulin (AREG) as a rhythmic transcriptional target of the BMAL1/HIF2A heterodimer, critical for regulating circadian variations of myocardial injury. Finally, pharmacologically targeting the BMAL1/HIF2A-AREG pathway provides effective cardioprotection, with maximum efficacy when aligned with the pathway's circadian trough. Our findings not only uncover a novel mechanism governing the circadian variations of myocardial injury but also pave the way for innovative circadian-based treatment strategies, potentially shifting current treatment paradigms for myocardial infarction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA