Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 22-28, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650160

RESUMO

This study aimed to evaluate the physiological role of NAMPT associated with MDPC-23 odontoblast cell proliferation. Cell viability was measured using the (DAPI) staining, caspase activation analysis and immunoblotting were performed. Visfatin promoted MDPC-23 odontoblast cell growth in a dose-dependent manner. Furthermore, the up-regulation of Visfatin promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers in MDPC-23 cells. However, FK-866 cell growth in a dose-dependent manner induced nuclear condensation and fragmentation. FK-866-treated cells showed H&E staining and increased apoptosis compared to control cells. The expression of anti-apoptotic factors components of the mitochondria-dependent intrinsic apoptotic pathway significantly decreased following FK-866 treatment. The expression of pro-apoptotic increased upon FK-866 treatment. In addition, FK-866 activated caspase-3 and PARP to induce cell death. In addition, after treating FK-866 for 72 h, the 3/7 activity of MDPC-23 cells increased in a concentration-dependent manner, and the IHC results also confirmed that Caspase-3 increased in a concentration-dependent. Therefore, the presence or absence of NAMPT expression in dentin cells was closely related to cell proliferation and formation of extracellular substrates.


Assuntos
Apoptose , Proliferação de Células , Nicotinamida Fosforribosiltransferase , Odontoblastos , Nicotinamida Fosforribosiltransferase/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Odontoblastos/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/metabolismo , Animais , Camundongos , Linhagem Celular , Citocinas/metabolismo , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Acrilamidas/farmacologia , Odontogênese/efeitos dos fármacos
2.
Biol Pharm Bull ; 47(2): 539-546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417906

RESUMO

Metformin is an anti-diabetic drug that exerts protective effects against neurodegenerative diseases. In this study, we investigated the protective effects of metformin against manganese (Mn)-induced cytotoxicity associated with Parkinson's disease-like symptoms in N27-A dopaminergic (DA) cells. Metformin (0.1-1 mM) suppressed Mn (0.4 mM)-induced cell death in a concentration-dependent manner. Metformin pretreatment effectively suppressed the Mn-mediated increase in the levels of oxidative stress markers, such as reactive oxygen species (ROS) and thiobarbituric acid reactive substances. Moreover, metformin restored the levels of the antioxidants, superoxide dismutase, intracellular glutathione, and glutathione peroxidase, which were reduced by Mn. Metformin (0.5 mM) significantly attenuated the decrease in sirtuin-1 (SIRT1) and peroxisome proliferator activated receptor gamma coactivator-1 alpha levels, which were increased by Mn (0.4 mM). In addition, metformin inhibited the expression of microRNA-34a, which directly targeted SIRT1. Metformin also inhibited the loss of Mn-induced mitochondrial membrane potential (ΔΨm) and activation of the apoptosis marker, caspase-3. Furthermore, metformin-mediated inhibition of ROS generation and caspase-3 activation, recovery of ΔΨm, and restoration of cell viability were partially reversed by the SIRT1 inhibitor, Ex527. These results suggest that metformin may protects against Mn-induced DA neuronal cell death mediated by oxidative stress and mitochondrial dysfunction possibly via the regulation of SIRT1 pathway.


Assuntos
Manganês , Metformina , Manganês/toxicidade , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Metformina/farmacologia , Sirtuína 1/metabolismo , Apoptose , Estresse Oxidativo , Neurônios Dopaminérgicos
3.
Urol Int ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531343

RESUMO

INTRODUCTION: To determine effects of adjuvant chemotherapy (AC) on survival outcomes compared to surgery alone without AC for upper tract urothelial carcinoma (UTUC) patients with variant histology (VH). METHODS: We conducted a systematic review and meta-analysis of studies investigating AC for UTUC in Medline, Embase, the Cochrane library up to January 2023. Population, intervention, comparator, and outcome were UTUC patients with VH, radical nephroureterectomy with AC, radical nephroureterectomy only, and oncological survival, respectively. RESULTS: Four retrospective studies were included. Regarding overall survival (OS), the pooled hazard ratio was 0.61 (95% confidence interval: 0.42-0.87; p = 0.007) across two studies. Regarding cancer specific survival (CSS), the pooled hazard ratio was 0.46 (95% confidence interval: 0.25-0.84; p = 0.01) across three studies. All included studies had a high quality based on the Newcastle-Ottawa Scale. Certainty of evidence for OS was low. Certainty of evidence for CSS was moderate due to a strong association (hazard ratio < 0.5). Publication bias was not significant for any studies. CONCLUSION: In UTUC patients with VH, administration of AC after surgery might have better survival outcomes than surgery alone. Our study provides evidence for decision-making of clinicians who treat UTUC patients with VH.

4.
Nurs Outlook ; 72(4): 102190, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788271

RESUMO

BACKGROUND: Nurse practitioners (NPs) can enhance NP care and improve access to care by autonomously managing their patient panels. Yet, its impact on workforce outcomes such as burnout, job satisfaction, and turnover intention remains unexplored. PURPOSE: To estimate the impact of NP panel management on workforce outcomes. METHODS: Structural equation modeling was conducted using survey data from 1,244 primary care NPs. NP panel management was categorized into co-managing patients with other providers, both co-managing and autonomously managing, and fully autonomous management. DISCUSSION: Fully autonomous management led to more burnout than co-managing (B = 0.089, bias-corrected 95% bootstrap confidence interval [0.028, 0.151]). Work hours partially (27%) mediated this relationship. This findings indicate that greater autonomy in panel management among NPs may lead to increased burnout, partially due to longer work hours. CONCLUSION: Interventions to reduce work hours could help NPs deliver quality care without burnout.

5.
Medicina (Kaunas) ; 60(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256393

RESUMO

Background and Objectives: Urolithiasis occurrence is uncommon in kidney transplantation patients, though it has serious implications, including acute kidney injury in the transplanted kidney. This study investigates the leading causes of urolithiasis in kidney transplantation patients, the diagnostic process, and the outcomes of multimodal management. Materials and Methods: Data collection spanned from January 1997 to December 2021, involving kidney transplantation patients with urolithiasis from the database of the Korean Society of Endourology and Robotics (KSER) research committee. Analysis encompassed factors triggering urolithiasis, the diagnostic process, stone attributes, treatment methods, and outcomes. Results: Our analysis included 58 kidney transplantation patients with urolithiasis from eight medical centers. Of these patients, 37 were male and 4 had previous urolithiasis diagnoses. The mean age was 59.09 ± 10.70 years, with a mean duration from kidney transplantation to diagnosis of 76.26 ± 183.14 months. The most frequent method of stone detection was through asymptomatic routine check-ups (54.7%). Among the 58 patients, 51 underwent stone treatment. Notably, 95.3% of patients with ureter stones received treatment, a significantly higher rate than the 66.7% of patients with renal stones (p = 0.010). Success rates showed no significant differences between renal (70%) and ureter stone (78.0%) groups (p = 0.881). Conclusions: Urolithiasis in transplanted kidneys constitutes an acute condition requiring emergency intervention. Endo-urological interventions are effective for kidney transplantation patients with urolithiasis. To ensure prevention and early detection, diligent follow-up and routine imaging tests are necessary.


Assuntos
Cálculos Renais , Transplante de Rim , Urolitíase , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Povo Asiático , Rim , Transplante de Rim/efeitos adversos , Urolitíase/etiologia , República da Coreia
6.
Curr Issues Mol Biol ; 45(8): 6775-6789, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623247

RESUMO

Alzheimer's disease (AD) is characterized by memory impairment and existence of amyloid-ß (Aß) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed medicinal mushroom mycelia (MMMM)-Phellinus linteus, Ganoderma lucidum, and Inonotus obliquus-cultivated on a barley medium was assessed for its anti-AD effects. Neuron-like PC12 cells, which were subjected to Zn2+, an Aß aggregator, were employed as an in vitro AD model. The cells pretreated with or without MMMM were assayed for Aß immunofluorescence, cell viability, reactive oxygen species (ROS), apoptosis, and antioxidant enzyme activity. Then, 5XFAD mice were administered with 30 mg/kg/day MMMM for 8 weeks and underwent memory function tests and histologic analyses. In vitro results demonstrated that the cells pretreated with MMMM exhibited attenuation in Aß immunofluorescence, ROS accumulation, and apoptosis, and incrementation in cell viability and antioxidant enzyme activity. In vivo results revealed that 5XFAD mice administered with MMMM showed attenuation in memory impairment and histologic deterioration such as Aß plaque accumulation and neuroinflammation. MMMM might mitigate AD-associated memory impairment and cerebral pathologies, including Aß plaque accumulation and neuroinflammation, by impeding Aß-induced neurotoxicity.

7.
Curr Issues Mol Biol ; 45(10): 8427-8443, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37886974

RESUMO

Focal cerebral ischemia (fCI) can result in brain injury and sensorimotor deficits. Brown algae are currently garnering scientific attention as potential therapeutic candidates for fCI. This study investigated the therapeutic effects of the hot water extract of Petalonia binghamiae (wPB), a brown alga, in in vitro and in vivo models of fCI. The neuroprotective efficacy of wPB was evaluated in an in vitro excitotoxicity model established using HT-22 cells challenged with glutamate. Afterward, C57/BL6 mice were administered wPB for 7 days (10 or 100 mg/kg, intragastric) and subjected to middle cerebral artery occlusion and reperfusion (MCAO/R) operation, which was used as an in vivo fCI model. wPB co-incubation significantly inhibited cell death, oxidative stress, and apoptosis, as well as stimulated the expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, and the nuclear translocation of its upstream regulator, nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-22 cells challenged with glutamate-induced excitotoxicity. Pretreatment with either dose of wPB significantly attenuated infarction volume, neuronal death, and sensorimotor deficits in an in vivo fCI model. Furthermore, the attenuation of oxidative stress and apoptosis in the ischemic lesion accompanied the wPB-associated protection. This study suggests that wPB can counteract fCI via an antioxidative effect, upregulating the Nrf2/HO-1 pathway.

8.
Biotechnol Bioeng ; 120(7): 2039-2044, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042226

RESUMO

Streptomyces are important industrial bacteria that produce pharmaceutically valuable polyketides. However, mass production on an industrial scale is limited by low productivity, which can be overcome through metabolic engineering and the synthetic biology of the host strain. Recently, the introduction of an auto-inducible expression system depending on microbial physiological state has been suggested as an important tool for the industrial-scale production of polyketides. In this study, titer improvement by enhancing the pool of CoA-derived precursors required for polyketide production was driven in a quorum sensing (QS)-dependent manner. A self-sustaining and inducer-independent regulatory system, named the QS-based metabolic engineering of precursor pool (QMP) system, was constructed, wherein the expression of genes involved in precursor biosynthesis was regulated by the QS-responsive promoter, scbAp. The QMP system was applied for neoaureothin production in a heterologous host, Streptomyces coelicolor M1152, and productivity increased by up to 4-fold. In particular, the engineered hyperproducers produced high levels of neoaureothin without adversely affecting cell growth. Overall, this study showed that self-regulated metabolic engineering mediated by QS has the potential to engineer strains for polyketide titer improvement.


Assuntos
Policetídeos , Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Engenharia Metabólica , Percepção de Quorum/genética , Streptomyces/genética , Policetídeos/metabolismo
9.
Biomacromolecules ; 24(8): 3775-3785, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37405812

RESUMO

In this study, selective photo-oxidation (SPO) is proposed as a simple, fast, and scalable one-stop strategy that enables simultaneous self-patterning and sensitivity adjustment of ultrathin stretchable strain sensors. The SPO of an elastic substrate through irradiation time-controlled ultraviolet treatment in a confined region enables precise tuning of both the surface energy and the elastic modulus. SPO induces the hydrophilization of the substrate, thereby allowing the self-patterning of silver nanowires (AgNWs). In addition, it promotes the formation of nonpermanent microcracks of AgNWs/elastomer nanocomposites under the action of strain by increasing the elastic modulus. This effect improves sensor sensitivity by suppressing the charge transport pathway. Consequently, AgNWs are directly patterned with a width of 100 µm or less on the elastic substrate, and AgNWs/elastomer-based ultrathin and stretchable strain sensors with controlled sensitivity work reliably in various operating frequencies and cyclic stretching. Sensitivity-controlled strain sensors successfully detect both small and large movements of the human hand.


Assuntos
Nanocompostos , Nanofios , Humanos , Elastômeros , Prata , Módulo de Elasticidade
10.
Microb Cell Fact ; 22(1): 212, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838667

RESUMO

BACKGROUND: Oviedomycin is one among several polyketides known for their potential as anticancer agents. The biosynthetic gene cluster (BGC) for oviedomycin is primarily found in Streptomyces antibioticus. However, because this BGC is usually inactive under normal laboratory conditions, it is necessary to employ systematic metabolic engineering methods, such as heterologous expression, refactoring of BGCs, and optimization of precursor biosynthesis, to allow efficient production of these compounds. RESULTS: Oviedomycin BGC was captured from the genome of Streptomyces antibioticus by a newly constructed plasmid, pCBA, and conjugated into the heterologous strain, S. coelicolor M1152. To increase the production of oviedomycin, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized in an in vitro setting to refactor the native promoters within the ovm BGC. The target promoters of refactoring were selected based on examination of factors such as transcription levels and metabolite profiling. Furthermore, genome-scale metabolic simulation was applied to find overexpression targets that could enhance the biosynthesis of precursors or cofactors related to oviedomycin production. The combined approach led to a significant increase in oviedomycin production, reaching up to 670 mg/L, which is the highest titer reported to date. This demonstrates the potential of the approach undertaken in this study. CONCLUSIONS: The metabolic engineering approach used in this study led to the successful production of a valuable polyketide, oviedomycin, via BGC cloning, promoter refactoring, and gene manipulation of host metabolism aided by genome-scale metabolic simulation. This approach can be also useful for the efficient production of other secondary molecules encoded by 'silent' BGCs.


Assuntos
Policetídeos , Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Engenharia Metabólica/métodos , Streptomyces/genética , Policetídeos/metabolismo , Família Multigênica
11.
BMC Nephrol ; 24(1): 152, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254087

RESUMO

BACKGROUND: Recent studies have shown that donor nephrectomy can induce renal function impairment. However, few meta-analysis studies about this have proceeded. Therefore, the objective of this systematic review and meta-analysis including all data of recent research studies was to determine whether living donor nephrectomy (LDN) could induce renal function impairment. METHODS: By November 2020, comprehensive literature searches were performed on PubMed, Embase, and Cochrane databases. Inclusion criteria were: (1) observational studies with data about overall end-stage renal disease (ESRD) or chronic kidney disease (CKD) of living kidney donors, (2) control group consisted of people without donor nephrectomy, and (3) outcomes of studies included long-term end-stage renal disease risks after living kidney donation. Risk of Bias in Non-randomized Studies of interventions (ROBINS-I) assessment tool was used to evaluate our methodological quality. RESULTS: The qualitative review included 11 studies and the meta-analysis included 5 studies. In the meta-analysis, the integrated overall ESRD risk was 5.57 (95% CI: 2.03-15.30). Regarding the overall risk of bias using ROBINS-I assessment tool, 0 studies was rated as "Low", 7 studies were rated as "moderate", 2 studies were rated as "Serious", and two studies were rated as "Critical". CONCLUSIONS: Our study showed that LDN increased ESRD risk in LDN patients. However, in our meta-analysis, variables in included studies were not uniform and the number of included studies was small. To have a definite conclusion, meta-analyses of well-planned and detailed studies need to be conducted in the future.


Assuntos
Falência Renal Crônica , Transplante de Rim , Insuficiência Renal , Humanos , Transplante de Rim/efeitos adversos , Nefrectomia/efeitos adversos , Rim/fisiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/cirurgia , Doadores Vivos
12.
Int Endod J ; 56(4): 432-446, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462163

RESUMO

AIM: The physiological effects and cellular mechanism of 25-hydroxycholesterol (25-HC), which is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase (CH25H) expressed under inflammatory conditions, are still largely unknown during odontoclastogenesis. This study aimed to evaluate 25-HC-induced odontoclastogenesis and its cellular mechanisms in odontoblast-like MDPC-23 cells. METHODOLOGY: To investigate 25-HC-induced odontoclastogenesis of MDPC-23 cells and its cellular mechanism, haemotoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, dentine resorption assay, zymography, reactive oxygen species (ROS) detection, immunocytochemistry, and nuclear translocation were performed. The experimental values are presented as mean ± standard deviation and were compared using analysis of variance, followed by post hoc multiple comparisons (Tukey's test) using SPSS software version 22 (IBM Corp.). A p-value <.05 was considered statistically significant. RESULTS: Lipopolysaccharide or receptor activator of nuclear factor-κB ligand (RANKL) induced the synthesis of 25-HC via the expression of CH25H in MDPC-23 cells (p < .01). Multinucleated giant cells with morphological characteristics and TRAP activity of the odontoclast were increased by 25-HC in MDPC-23 cells (p < .01). Moreover, 25-HC increased dentine resorption through the expression and activity of matrix metalloproteinases in MDPC-23 cells. It not only increased the expression of odontoclastogenic biomarkers but also translocated cytosolic nuclear factor-κB (NF-κB) to the nucleus in MDPC-23 cells. Additionally, 25-HC not only increased the production of ROS (p < .01), expression of inflammatory mediators (p < .01), pro-inflammatory cytokines, receptor activator of NF-κB (RANK), and RANKL but also suppressed the expression of osteoprotegerin (OPG) in MDPC-23 cells. In contrast, CDDO-Me, a chemical NF-κB inhibitor, decreased TRAP activity (p < .01) and downregulated the expression of the odontoclastogenic biomarkers, including RANK and RANKL, in MDPC-23 cells. CONCLUSION: 25-HC induced odontoclastogenesis by modulating the RANK-RANKL-OPG axis via NF-κB activation in MDPC-23 cells. Therefore, these findings provide that 25-HC derived from cholesterol metabolism may be involved in the pathophysiological etiological factors of internal tooth resorption.


Assuntos
NF-kappa B , Odontoblastos , Diferenciação Celular , NF-kappa B/metabolismo , Odontoblastos/metabolismo , Osteoclastos , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Animais , Camundongos
13.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958616

RESUMO

Breast cancer is a common type of cancer characterized by high mortality rates. However, chemotherapy is not selective and often leads to side-effects. Therefore, there is a need for the development of highly efficient drugs. Recent studies have shown that some extracellular vesicles (EVs) derived from cell cultures possess anti-cancer activity and hold great potential as cancer therapeutics. However, the use of mammalian cell cultures for EV production results in low productivity and high costs. To address this issue, extracellular vesicles derived from perilla leaves (Perex) were isolated and investigated for their anti-cancer activity in various cancer cells. Initially, a high concentration of Perex with a low level of impurities was successfully purified through a combination of ultrafiltration and size-exclusion chromatography. Perex exhibited potent anti-cancer activities, inhibiting the proliferation, migration, and invasion of MDA-MB-231 cancer cells, which have high levels of caveolin-1 compared to other cancer and normal cells. This selective attack on cancer cells with high levels of caveolin-1 reduces unwanted side-effects on normal cells. Considering its high productivity, low production cost, selective anti-cancer activity, and minimal side-effects, Perex represents a promising candidate for the therapeutic treatment of breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Linhagem Celular Tumoral , Mamíferos/metabolismo
14.
Curr Issues Mol Biol ; 44(1): 257-272, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723398

RESUMO

Vascular dementia (VaD) is characterized by a time-dependent memory deficit and essentially combined with evidence of neuroinflammation. Thus, polyphenol-rich natural plants, which possess anti-inflammatory properties, have received much scientific attention. This study investigated whether Perilla frutescens leaf extract (PFL) exerts therapeutic efficacy against VaD. Sprague Dawley rats were divided into five groups: SO, sham-operated and vehicle treatment; OP, operated and vehicle treatment; PFL-L, operated and low-dose (30 mg/kg) PFL treatment; PFL-M, operated and medium-dose (60 mg/kg) PFL treatment; and PFL-H, operated and high-dose (90 mg/kg) PFL treatment. Two-vessel occlusion and hypovolemia (2VO/H) were employed as a surgical model of VaD, and PFL was given orally perioperatively for 23 days. The rats underwent the Y-maze, Barnes maze, and passive avoidance tests and their brains were subjected to histologic studies. The OP group showed VaD-associated memory deficits, hippocampal neuronal death, and microglial activation; however, the PFL-treated groups showed significant attenuations in all of the above parameters. Using lipopolysaccharide (LPS)-stimulated BV-2 cells, a murine microglial cell line, we measured PFL-mediated changes on the production of nitric oxide (NO), TNF-α, and IL-6, and the activities of their upstream MAP kinases (MAPKs)/NFκB/inducible NO synthase (iNOS). The LPS-induced upregulations of NO, TNF-α, and IL-6 production and MAPKs/NFκB/iNOS activities were globally and significantly reversed by 12-h pretreatment of PFL. This suggests that PFL can counteract VaD-associated structural and functional deterioration through the attenuation of neuroinflammation.

15.
Opt Express ; 30(26): 47816-47825, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558700

RESUMO

Random lasers are promising in the spectral regime, wherein conventional lasers are unavailable, with advantages of low fabrication costs and applicability of diverse gain materials. However, their practical application is hindered by high threshold powers, low power efficiency, and difficulties in light collection. Here, we demonstrate a power-efficient easy-to-fabricate non-resonant laser using a deep hole on a porous gain material. The laser action in this counterintuitive cavity was enabled by non-resonant feedback from strong diffuse reflections on the inner surface. Additionally, significant enhancements in slope efficiency, threshold power, and directionality were obtained from cavities fabricated on a porous Nd:YAG ceramic.

16.
J Korean Med Sci ; 37(31): e237, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35942555

RESUMO

BACKGROUND: Several cohort studies have explored the relationship between androgen deprivation therapy (ADT) and the severity of coronavirus disease 2019 (COVID-19). This study aimed to characterize the relationship between ADT and the severity of COVID-19 in patients with prostate cancer. METHODS: A systematic search was conducted using PubMed, Embase, and Cochrane Library databases from the inception of each database until February 31, 2020. Patients with prostate cancer who were treated with ADT were assigned to treatment group while those patients who were not treated with ADT were assigned to the control group. Outcomes were severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) positivity, hospitalization, intensive care unit (ICU) admission, and death. The risk of bias was evaluated using ROBINS-I (Risk Of Bias In Non-randomized Studies of Interventions) tool. RESULTS: Three studies with qualitative synthesis were included. Finally, two studies with quantitative synthesis having a total of 44,213 patients were included for the present systematic review. There was no significant difference in SARS-CoV-2 positive rate (odds ratio [OR], 0.52; 95% confidence intervals [Cis], 0.13-2.09; P = 0.362), hospitalization (OR, 0.52; 95% CIs, 0.07-3.69; P = 0.514), ICU admission (OR, 0.93; 95% CIs, 0.39-2.23, P = 0.881), or death (OR, 0.88; 95% CIs, 0.06-12.06; P = 0.934) between ADT and non-ADT groups. CONCLUSION: Qualitative and quantitative analyses of previous studies revealed no significant effect of ADT on COVID-19. However, more studies with higher quality that explore biochemical and immunological factors involved are needed to confirm this finding in the future.


Assuntos
COVID-19 , Neoplasias da Próstata , Antagonistas de Androgênios/efeitos adversos , Androgênios , Humanos , Masculino , Neoplasias da Próstata/complicações , Neoplasias da Próstata/tratamento farmacológico , SARS-CoV-2
17.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269726

RESUMO

A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.


Assuntos
Doenças Musculoesqueléticas , Osteoartrite , Humanos , Doenças Musculoesqueléticas/tratamento farmacológico , Antagonistas dos Receptores de Neurocinina-1 , Osteoartrite/tratamento farmacológico , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo
18.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555596

RESUMO

The core-shell structure of poly(St-co-MAA) nanoparticles containing ß-diketonate Eu3+ complexes were synthesized by a step-wise process. The ß-diketonate Eu3+ complexes of Eu (TFTB)2(MAA)P(Oct)3 [europium (III); 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione = TFTB; trioctylphosphine = (P(Oct)3); methacrylic acid = MAA] were incorporated to poly(St-co-MAA). The poly(St-co-MAA) has highly monodispersed with a size of 300 nm, and surface charges of the poly(St-co-MAA) are near to neutral. The narrow particle size distribution was due to the constant ionic strength of the polymerization medium. The activated carboxylic acid of poly(St-co-MAA) further chelated with europium complex and polymerize between acrylic groups of poly(St-co-MAA) and Eu(TFTB)2(MAA)P(Oct)3. The Em spectra of europium complexes consist of multiple bands of Em at 585, 597, 612 and 650 nm, which are assigned to 5D0→7FJ (J = 0-3) transitions of Eu3+, respectively. The maximum Em peak is at 621 nm, which indicates a strong red Em characteristic associated with the electric dipole 5D0→7F2 transition of Eu3+ complexes. The cell-specific fluorescence of Eu(TFTB)2(MAA)P(Oct)3@poly(St-co-MAA) indicated endocytosis of Eu(TFTB)2(MAA)P(Oct)3@poly(St-co-MAA). There are fewer early apoptotic, late apoptotic and necrotic cells in each sample compared with live cells, regardless of the culture period. Eu(TFTB)2(MAA)P(Oct)3@poly(St-co-MAA) synthesized in this work can be excited in the full UV range with a maximum Em at 619 nm. Moreover, these particles can substitute red luminescent organic dyes for intracellular trafficking and cellular imaging agents.


Assuntos
Európio , Nanopartículas , Európio/química , Luminescência , Fluorescência , Corantes
19.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956750

RESUMO

7α,25-dihydroxycholesterol (7α,25-DHC) is an oxysterol synthesized from 25-hydroxycholesterol by cytochrome P450 family 7 subfamily B member 1 (CYP7B1) and is a monooxygenase (oxysterol-7α-hydroxylase) expressed under inflammatory conditions in various cell types. In this study, we verified that 7α,25-DHC-induced oxiapoptophagy is mediated by apoptosis, oxidative stress, and autophagy in L929 mouse fibroblasts. MTT assays and live/dead cell staining revealed that cytotoxicity was increased by 7α,25-DHC in L929 cells. Consequentially, cells with condensed chromatin and altered morphology were enhanced in L929 cells incubated with 7α,25-DHC for 48 h. Furthermore, apoptotic population was increased by 7α,25-DHC exposure through the cascade activation of caspase-9, caspase-3, and poly (ADP-ribose) polymerase in the intrinsic pathway of apoptosis in these cells. 7α,25-DHC upregulated reactive oxygen species (ROS) in L929 cells. Expression of autophagy biomarkers, including beclin-1 and LC3, was significantly increased by 7α,25-DHC treatment in L929 cells. 7α,25-DHC inhibits the phosphorylation of Akt associated with autophagy and increases p53 expression in L929 cells. In addition, inhibition of G-protein-coupled receptor 183 (GPR183), a receptor of 7α,25-DHC, using GPR183 specific antagonist NIBR189 suppressed 7α,25-DHC-induced apoptosis, ROS production, and autophagy in L929 cells. Collectively, GPR183 regulates 7α,25-DHC-induced oxiapoptophagy in L929 cells.


Assuntos
Oxisteróis , Receptores Acoplados a Proteínas G , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Fibroblastos/metabolismo , Hidroxicolesteróis/metabolismo , Camundongos , Oxisteróis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
20.
Korean J Physiol Pharmacol ; 26(1): 37-45, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965994

RESUMO

The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC- 23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA