Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(22): 10025-10033, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616519

RESUMO

Noncrystalline oxides under pressure undergo gradual structural modifications, highlighted by the formation of a dense noncrystalline network topology. The nature of the densified networks and their electronic structures at high pressures may account for the mechanical hardening and the anomalous changes in electromagnetic properties. Despite its importance, direct probing of the electronic structures in amorphous oxides under compression above the Mbar pressure (>100 GPa) is currently lacking. Here, we report the observation of pressure-driven changes in electronic configurations and their delocalization around oxygen in glasses using inelastic X-ray scattering spectroscopy (IXS). In particular, the first O K-edge IXS spectra for compressed GeO2 glass up to 148 GPa, the highest pressure ever reached in an experimental study of GeO2 glass, reveal that the glass densification results from a progressive increase of oxygen proximity. While the triply coordinated oxygen [3]O is dominant below ∼50 GPa, the IXS spectra resolve multiple edge features that are unique to topologically disordered [4]O upon densification above 55 GPa. Topological compaction in GeO2 glass above 100 GPa results in pronounced electronic delocalization, revealing the contribution from Ge d-orbitals to oxide densification. Strong correlations between the glass density and the electronic configurations beyond the Mbar conditions highlight the electronic origins of densification of heavy-metal-bearing oxide glasses. Current experimental breakthroughs shed light on the direct probing of the electronic density of states in high-Z oxides above 1 Mbar, offering prospects for studies on the pressure-driven changes in magnetism, superconductivity, and electronic transport properties in heavy-metal-bearing oxides under compression.

2.
Sci Adv ; 9(20): eadg4159, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205753

RESUMO

Diamond shows unprecedented hardness. Because hardness is a measure of resistance of chemical bonds in a material to external indentation, the electronic bonding nature of diamond beyond several million atmospheres is key to understanding the origin of hardness. However, probing the electronic structures of diamond at such extreme pressure has not been experimentally possible. The measurements on the inelastic x-ray scattering spectra for diamond up to 2 million atmospheres provide data on the evolution of its electronic structures under compression. The mapping of the observed electronic density of states allows us to obtain a two-dimensional image of the bonding transitions of diamond undergoing deformation. The spectral change near edge onset is minor beyond a million atmospheres, while its electronic structure displays marked pressure-induced electron delocalization. Such electronic responses indicate that diamond's external rigidity is supported by its ability to reconcile internal stress, providing insights into the origins of hardness in materials.

3.
J Phys Chem B ; 114(1): 412-20, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19928789

RESUMO

Knowledge of the extent of chemical and topological disorder in topological disordered oxide glasses and melts is essential for understanding the atomistic origins of their macroscopic properties. Here, we report the high-resolution B-11 and O-17 triple quantum magic angle spinning (3QMAS) NMR spectra for binary borogermanate glasses. The NMR results, together with quantum chemical calculations of cluster energy difference, allow us to estimate the extent of chemical disorder and topology variation with composition. The B-11 NMR result shows that the boroxol ring fraction decreases nonlinearly with increasing mole fraction of Ge and is smaller than that in binary borosilicate glasses, suggesting that the Ge/Si content influences the topological changes. Whereas oxygen clusters are not well resolved in O-17 NMR spectra, the Ge-O-Ge fraction apparently increases with increasing GeO(2) content. The estimated degree of framework disorder (Q) in borogermanate glasses is approximately 0.4, according to quantum chemical calculations based on density functional theory. This is halfway between chemical order (Q = 1) and a random distribution (Q = 0). In contrast, Q is approximately -0.6 for borosilicate glasses, indicating a moderate tendency toward complete phase separation (Q = -1). This result confirms that the degree of framework disorder shows a strong dependence on the type of framework cations (Si or Ge). The predicted configurational enthalpy of borogermanate glasses, explicitly considering both chemical and topological disorder, shows a negative deviation as predicted from the positive Q value. The results demonstrate that the macroscopic properties of topologically disordered noncrystalline solids can be established from the detailed quantification of topological and chemical disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA