Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Blood ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696731

RESUMO

This meta-analysis evaluates the efficacy and safety of chimeric antigen receptor (CAR) T-cell therapy and bispecific antibodies for relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL). We searched MEDLINE, Embase, and Cochrane databases until July 2023 for trials assessing CAR T-cell therapies and CD20×CD3 bispecific antibodies as third- or subsequent-line in R/R DLBCL. Random effects models estimated the complete response (CR) rate and secondary outcomes, with meta-regressions adjusting for relevant covariates. Sixteen studies comprising 1,347 patients were included in the pooled analysis. The pooled CR rate for bispecific antibodies was 0.36 (95% CI, 0.29 to 0.43), compared to 0.51 (0.46 to 0.56) for CAR T-cell therapy (p<0.01). This superiority persisted when comparing the CAR-T naïve patients within the bispecific antibody group, CR rate of 0.37 (0.32 to 0.43). Multivariable meta-regression also revealed better efficacy of CAR-T with adjustment for the proportion of double-hit lymphoma. The pooled one-year progression-free survival rate mirrored these findings (0.32 [0.26 to 0.38] vs 0.44 [0.41 to 0.48], p<0.01). For adverse events of ≥ grade 3, the bispecific antibody had incidences of 0.02 (0.01 to 0.04) for cytokine release syndrome, 0.01 (0.00 to 0.01) for neurotoxicity, and 0.10 (0.03 to 0.16) for infections. The CAR-T cell had rates of 0.08 (0.03 to 0.12), 0.11 (0.06 to 0.17), and 0.17 (0.11 to 0.22), respectively, with significant differences observed in the first two categories. In summary, CAR-T cell therapy outperformed bispecific antibody in achieving higher CR rates, though with an increase in severe adverse events.

2.
Pharmacol Rev ; 75(4): 739-757, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36707250

RESUMO

Over the past few decades, humankind has constantly encountered new viral species that create havoc in the socioeconomic balance worldwide. Among the method to combat these novel viral infections, fast and point-of-care diagnosis is of prime importance to contain the spreading of viral infections. However, most sensitive diagnostic systems for viral infections are time-consuming and require well-trained professionals, making it difficult for the patients. In recent years nanozymes emerged as promising therapeutic and fast diagnostic tools due to their multienzyme-like catalytic performance. Nanozymes can be designed using inorganic or organic components with tailorable physicochemical surface properties, enabling the attachment of various molecules and species on the surface of the nanozyme for specific recognition. In addition to the composition, the multienzyme-like catalytic performance can be modulated by the shape and size of the nanoparticles. Due to their multicatalytic abilities, nanozymes can be used for fast diagnosis and therapy for viral infections. Here we attempt to focus on the insights and recent explorations on the advances in designing various types of nanozymes as a theranostic tool for viral infections. Thus, this review intends to generate interest in the clinical translation of nanozymes as a theranostic tool for viral infections by providing knowledge about the multidisciplinary potential of nanozyme. SIGNIFICANCE STATEMENT: The multienzyme-like properties of nanozymes suggest their role in diagnosing and treating various diseases. Although the potential roles of nanozymes for various viral infections have been studied in the last few decades, no review provides recent explorations on designing various types of nanozymes for the detection and treatment of viral infections. This review provides insights into designing nanozymes to diagnose and treat viral infections, assisting future researchers in developing clinically translatable nanozymes to combat novel viral infections.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Catálise , Propriedades de Superfície
3.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849931

RESUMO

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Assuntos
Quitosana , Emulsões , Hidrogéis , Nanopartículas Metálicas , Quercetina , Prata , Pele , Cicatrização , Quercetina/química , Quercetina/farmacologia , Cicatrização/efeitos dos fármacos , Quitosana/química , Animais , Emulsões/química , Camundongos , Humanos , Pele/efeitos dos fármacos , Pele/lesões , Nanopartículas Metálicas/química , Prata/química , Hidrogéis/química , Materiais Biocompatíveis/química , Bandagens , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Celulose/química , Masculino , Regeneração/efeitos dos fármacos , Células HaCaT , Oxirredução , Metilgalactosídeos
4.
Bioprocess Biosyst Eng ; 47(8): 1393-1407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942827

RESUMO

The most prevalent form of inflammatory bowel disease (IBD), ulcerative colitis (UC), is characterized by persistent inflammation of the colorectal mucosa. It is asymptomatic, whereas Crohn's disease (CD) causes patchy lesions in the gastrointestinal tract. Men and women suffer equally from ulcerative colitis, which usually strikes in the second and third decades of life and becomes more common in senior citizens. In the present study, we produced zinc oxide nanoparticles using the natural herbal plant, Cassia alata. Zinc oxide nanoparticles have remarkable antimicrobial and antitumor benefits in the field of biomedical science. Furthermore, the synthesized zinc oxide nanoparticles (ZnO NPs) were characterized using UV, XRD, FTIR, and SEM analyses. The XRD analysis confirmed the crystallite nature and purity of the synthesized nanoparticles. Zinc oxide nanoparticles with a uniform size and partially agglomerated morphology were verified by SEM analysis. We investigated the protective effects of environmentally friendly zinc oxide nanoparticles in dextran sodium sulfate-induced ulcerative colitis mouse models. Green synthesized Cassia alata zinc oxide nanoparticles (CA ZnO NPs) reversed weight loss, disease activity index, colon shortening, and colon histological damage. Zinc oxide nanoparticles reduce hypersensitivity, oxidative stress, and inflammation, and protect the mucosal layer. Green synthesized CA ZnO NPs demonstrated protection against dextran sodium sulfate-induced ulcerative colitis via anti-inflammatory activity.


Assuntos
Cassia , Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Nanopartículas Metálicas , Óxido de Zinco , Animais , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Camundongos , Cassia/química , Nanopartículas Metálicas/química , Nanopartículas/química , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia
5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047798

RESUMO

Most studies related to hemp are focused on Cannabidiol (CBD) and Tetrahydrocannabinol (THC); however, up to 120 types of phytocannabinoids are present in hemp. Hemp leaves contain large amounts of Cannabidiolic acid (CBDA) and Tetrahydrocannabinolic acid (THCA), which are acidic variants of CBD and THC and account for the largest proportion of CBDA. In recent studies, CBDA exhibited anti-hyperalgesia and anti-inflammatory effects. THCA also showed anti-inflammatory and neuroprotective effects that may be beneficial for treating neurodegenerative diseases. CBDA and THCA can penetrate the blood-brain barrier (BBB) and affect the central nervous system. The purpose of this study was to determine whether CBDA and THCA ameliorate Alzheimer's disease (AD)-like features in vitro and in vivo. The effect of CBDA and THCA was evaluated in the Aß1-42-treated mouse model. We observed that Aß1-42-treated mice had more hippocampal Aß and p-tau levels, pathological markers of AD, and loss of cognitive function compared with PBS-treated mice. However, CBDA- and THCA-treated mice showed decreased hippocampal Aß and p-tau and superior cognitive function compared with Aß1-42-treated mice. In addition, CBDA and THCA lowered Aß and p-tau levels, alleviated calcium dyshomeostasis, and exhibited neuroprotective effects in primary neurons. Our results suggest that CBDA and THCA have anti-AD effects and mitigate memory loss and resilience to increased hippocampal Ca2+, Aß, and p-tau levels. Together, CBDA and THCA may be useful therapeutic agents for treating AD.


Assuntos
Doença de Alzheimer , Canabidiol , Canabinoides , Cannabis , Fármacos Neuroprotetores , Camundongos , Animais , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Peptídeos beta-Amiloides , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia
6.
Molecules ; 28(9)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175223

RESUMO

Wastewater management is of considerable economic and environmental importance for the dyeing industry. Digital textile printing (DTP), which is based on sublimation transfer and does not generate wastewater, is currently being explored as an inkjet-based method of printing colorants onto fabric. It finds wide industrial applications with most poly(ethylene terephthalate) (PET) and nylon fibers. However, for additional industrial applications, it is necessary to use natural fibers, such as cotton. Therefore, to expand the applicability of DTP, it is essential to develop a novel reactive disperse dye that can interact with the fabric. In this study, we introduced a blocked isocyanate functional group into the dye to enhance binding to the fabric. The effect of sublimation transfer on fabrics as a function of temperature was compared using the newly synthesized reactive disperse dyes with different blocking groups based on pyrazole derivatives, such as pyrazole (Py), di-methylpyrazole (DMPy), and di-tert-butylpyrazole (DtBPy). Fabrics coated with the new reactive disperse dyes, including PET, nylon, and cotton, were printed at 190 °C, 200 °C, and 210 °C using thermal transfer equipment. In the case of the synthesized DHP-A dye on cotton at 210 °C, the color strength was 2.1, which was higher than that of commercial dyes and other synthesized dyes, such as DMP-A and DTP-A. The fastness values of the synthesized DHP-A were measured on cotton, and it was found that the washing and light fastness values on cotton are higher than those of commercial dyes. This study confirmed the possibility of introducing isocyanate groups into reactive disperse dyes.

7.
Invest New Drugs ; 40(2): 265-273, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973117

RESUMO

The emergence of acquired resistance limits the long-term efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Thus, development of effective strategies to overcome resistance to EGFR TKI is urgently needed. Multiple mechanisms to reactivate ERK signaling have been successfully demonstrated in acquired resistance models. We found that in EGFR mutant non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR TKIs was accompanied by increased activation of ERK. Increased ERK activation was also found in in vitro models of acquired EGFR TKI resistance. ASN007 is a potent selective ERK1/2 inhibitor with promising antitumor activity in cancers with BRAF and RAS mutations. ASN007 treatment impeded tumor cell growth and the cell cycle in EGFR TKI-resistant cells. In addition, combination treatment with ASN007 and EGFR TKIs significantly decreased the survival of resistant cells, enhanced induction of apoptosis, and effectively inhibited the growth of erlotinib-resistant xenografts, providing the preclinical rationale for testing combinations of ASN007 and EGFR TKIs in EGFR-mutated NSCLC patients. This study emphasizes the importance of targeting ERK signaling in maintaining the long-term benefits of EGFR TKIs by overcoming acquired resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Humanos , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Microb Pathog ; 168: 105576, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561980

RESUMO

This study was designed to evaluate the potential of using newly purified Salmonella phage-encoded endolysin LysPB32 as novel antibiotic alternative. The endolysin LysPB32 was characterized by analyzing pH and thermal stability, lytic spectrum, antimicrobial activity, and mutant frequency against Salmonella Typhimurium KCCM 40253 (STKCCM), S. Typhimurium ATCC 19585 (STATCC), S. Typhimurium CCARM 8009 (STCCARM), Klebsiella pneumoniae ATCC 23357 (KPATCC), K. pneumoniae CCARM 10237 (KPCCARM), Pseudomonas aeruginosa ATCC 27853 (PAATCC), Listeria monocytogenes ATCC 1911 (LMATCC), Staphylococcus aureus ATCC 25923 (SAATCC), and S. aureus CCARM 3080 (SACCARM). The molecular weight of LysPB32 is 17 kDa that was classified as N-acetyl-ß-d-muramidase. The optimum activity of LysPB32 against the outer membrane (OM) permeabilized STKCCM, STATCC, and STCCARM was observed at 37 °C and pH 6.5. LysPB32 had a broad spectrum of muralytic activity against antibiotic-sensitive STKCCM (41 mOD/min), STATCC (32 mOD/min), and SBKACC (25 mOD/min) and antibiotic-resistant STCCARM (35 mOD/min) and KPCCARM (31 mOD/min). The minimum inhibitory concentrations (MICs) of polymyxin B against STKCCM, STCCARM, and STATCC were decreased by 4-, 4-, and 8-folds, respectively, when treated with LysPB32. The combination of LysPB32 and polymyxin B effectively inhibited the growth of STKCCM, STCCARM, and STATCC after 24 h of incubation at 37 °C, showing 4.9-, 4.4-, and 3.3-log reductions, respectively. The mutant frequency was low in STKCCM, STCCARM, and STATCC treated with combination of LysPB32-polymyxin B system. The results suggest the LysPB32-polymyxin system can be a potential candidate for alternative therapeutic agent to control antibiotic-resistant pathogens.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Endopeptidases , Klebsiella pneumoniae , Polimixina B/farmacologia , Salmonella typhimurium , Staphylococcus aureus
9.
J Nanobiotechnology ; 20(1): 222, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35778747

RESUMO

Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro/uso terapêutico , Humanos , Imunoterapia , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fototerapia
10.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566102

RESUMO

Black soybean has been used in traditional medicine to treat inflammatory diseases, cancer, and diabetes and as a nutritional source since ancient times. We found that Korean black soybean cultivar A63 has more cyanidin-3-O-glucoside, (C3G), procyanidin B2 (PB2), and epicatechin (EPC) contents than other cultivars and has beneficial effects on cell viability and anti-oxidation. Given the higher concentration of anthocyanidins and their strong anti-oxidant activity, we predicted that A63 extract could relieve inflammatory disease symptoms, including those of atopic dermatitis (AD). Here, we evaluated the anti-AD activity of A63 extract in an oxazolone (OXA)-induced mouse model. A63 extract treatment significantly reduced epidermal thickness and inflammatory cell infiltration, downregulated the expression of AD gene markers, including Interleukin (IL)-4 and IL-5, and restored damaged skin barrier tissues. Furthermore, A63 extract influenced the activation of the signal transducer and activator of transcription (STAT) 3 and STAT6, extracellular regulatory kinase (ERK), and c-Jun N-terminal kinase (JNK) signaling pathways, which play a crucial role in the development of AD. Altogether, our results suggest that A63 can ameliorate AD-like skin inflammation by inhibiting inflammatory cytokine production and STAT3/6 and Mitogen-activated protein kinase (MAPK) signaling and restoring skin barrier function.


Assuntos
Dermatite Atópica , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona/efeitos adversos , Extratos Vegetais/metabolismo , Pele , Glycine max/metabolismo
11.
Oncology ; 99(6): 365-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730723

RESUMO

BACKGROUND: Biliary tract cancer (BTC) is associated with poor prognosis because of its aggressive and heterogeneous nature. Programmed death ligand 1 (PD-L1) has been considered a novel biomarker for prognosis and response of immune checkpoint inhibitors in various tumors. However, there are limited data reporting on the role of PD-L1 in advanced BTC patients. PATIENTS AND METHODS: We analyzed 186 patients with advanced BTC who received palliative gemcitabine and platinum between May 2010 and December 2019. All patients were evaluated for PD-L1 expression by combined positive score positivity. RESULTS: Of the 186 patients, the primary tumor location was intrahepatic cholangiocarcinoma (IHCC) in 72 (38.7%), extrahepatic cholangiocarcinoma (EHCC) in 90 (48.4%), and gallbladder (GB) cancer in 24 (12.9%). Among all the patients, 53 (28.5%) had PD-L1 positivity. The median overall survival (OS) of patients with PD-L1 positivity or negativity was 12.1 and 15.4 months, respectively. The median progression-free survival (PFS) in patients with PD-L1 positivity or negativity was 5.7 and 7.1 months, respectively. OS and PFS were not statistically different between groups. In subgroup analysis, EHCC patients with PD-L1 negativity had more favorable OS (17.2 vs. 11.6 months, p = 0.002) and PFS (7.8 vs. 5.4 months, p = 0.005) than those who were PD-L1-positive. However, this finding was not reproduced in patients with IHCC or GB cancer. CONCLUSION: This study demonstrated that PD-L1 expression might be a novel prognostic biomarker in patients with EHCC but not in patients with IHCC or GB cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Antígeno B7-H1/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias da Vesícula Biliar/tratamento farmacológico , Platina/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Feminino , Neoplasias da Vesícula Biliar/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Paliativos , Platina/uso terapêutico , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Gencitabina
12.
Hematol Oncol ; 39(5): 664-673, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34487565

RESUMO

Peripheral T-cell lymphomas (PTCLs) are known to have an aggressive clinical course and grave prognosis. Several recommended first-line treatment regimens are available, but identification of the superior treatment remain elusive. We conducted a systematic review and meta-analysis to determine which study-level factors and group of regimens affect survival outcomes. The MEDLINE, Embase, and Cochrane databases were searched from inception to January 2021, and phase II or III clinical studies evaluating the efficacy of chemotherapy regimens were included. Random effects models were used to estimate 3-year overall survival rate, complete remission rate, and subgroup differences. Meta-regressions were carried out with adjustments for relevant covariates. Overall, 34 cohorts from 28 studies comprising 1424 PTCL patients were included in the pooled analysis. Chemotherapy regimens were divided into four groups: cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP), CHOP plus etoposide, gemcitabine-based, and others. The pooled 3-year overall survival rate was 0.49 (95% confidence interval [CI] 0.43-0.54) for CHOP, 0.61 (95% CI 0.52-0.70) for CHOP plus etoposide, 0.39 (95% CI 0.30-0.47) for gemcitabine-based, and 0.61 (95% CI 0.44-0.78) for others. CHOP plus etoposide was significantly better than CHOP, with the latter used as a reference (coefficient of 0.11; p = 0.035), with adjustment for the proportion of International Prognostic Index score 4-5 in meta-regression analysis. Although grossly divided groups were pooled and analyzed, among four regimen groups for frontline PTCL treatment CHOP plus etoposide showed better survival than CHOP.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma de Células T Periférico/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/classificação , Humanos , Linfoma de Células T Periférico/patologia , Prognóstico , Taxa de Sobrevida
13.
Bioorg Med Chem Lett ; 36: 127828, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508466

RESUMO

Bioactivity-driven LC/MS-based phytochemical analysis of the root bark extract of Ulmus davidiana var. japonica led to the isolation of 10 compounds including a new coumarin glycoside derivative, ulmusakidian (1). The structure of the new compound was elucidated using extensive spectroscopic analyses via 1D and 2D NMR spectroscopic data interpretations, HR-ESIMS, and chemical transformation. The isolated compounds 1-10 were tested for their antifungal activity against human fungal pathogens Cryptococcus neoformans and Candida albicans. Compounds 9 and 10 showed antifungal activity against C. neoformans, with the lowest minimal inhibitory concentration (MIC) of 12.5-25.0 µg/mL, whereas none of the compounds showed antifungal activity against C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Ulmus/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 50: 128322, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34407463

RESUMO

Eight compounds (1-8) including one novel nitrophenyl glycoside, ginkgonitroside (1) were isolated from the leaves of Ginkgo biloba, a popular medicinal plant. The structure of the new compound was characterized using extensive spectroscopic analyses via 1D and 2D NMR data interpretations, HR-ESIMS, and chemical transformation. To the best of our knowledge, the present study is the first to report the presence of nitrophenyl glycosides, which are relatively unique phytochemicals in natural products, in G. biloba. The isolated compounds (1-8) were examined for their effects on the regulation of mesenchymal stem cell (MSC) differentiation. Compounds 1-3 and 8 were able to suppress MSC differentiation toward adipocytes. In contrast, compounds 5 and 8 showed activity promoting osteogenic differentiation of MSCs. These findings demonstrate that the active compounds showed regulatory activity on MSC differentiation between adipocytes and osteocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ginkgo biloba/química , Glicosídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Adipócitos/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Glicosídeos/química , Camundongos , Osteoblastos/fisiologia , Folhas de Planta/química
15.
Nanotechnology ; 32(45)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352732

RESUMO

Here, for the first time, we have developed a novel green synthesis method where chitosan acts as a reducing agent and as a colloidal stabilizer, together with polyquaternium for the synthesis of platinum nanoparticles (PtNPs). It was observed that only chitosan-stabilized PtNPs (Ch@PtNPs) were stable up to pH 5, with a diameter of around 89 nm. The diameter of the Ch@PtNPs increased with the increase in pH, indicating the instability of Ch@PtNPs at neutral and alkaline mediums. However, when polyquaternium (PQ) (a cationic polymer) was added as a stabilizer along with chitosan, the diameter of chitosan/polyquaternium stabilized PtNPs (Ch/PQ@PtNPs), i.e. 87 nm, remained almost constant up to pH 9. Similarly, the pH-dependent decrease in the surface charge of Ch@PtNPs was also attenuated with the addition of polyquaternium. This indicates high colloidal stability of Ch/PQ@PtNPs in acidic, neutral, as well as alkaline mediums. It was observed that Ch/PQ@PtNPs exhibited high antibacterial activity againstStaphylococcus aureus, as compared to uncapped PtNPs and Ch@PtNPs. Thus, the addition of PQ increases the antibacterial properties of Ch/PQ@PtNPs againstStaphylococcus aureusby enhancing the stability of PtNPs at neutral pH.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Quitosana/química , Platina/farmacologia , Compostos de Amônio Quaternário/química , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Celulose/química , Estabilidade de Medicamentos , Química Verde , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Platina/química , Staphylococcus aureus/efeitos dos fármacos
16.
J Nanobiotechnology ; 19(1): 100, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836744

RESUMO

BACKGROUND: Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. RESULTS: The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of - 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. CONCLUSIONS: Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.


Assuntos
Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Carvedilol/química , Carvedilol/farmacologia , Hidrogéis/química , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Tamanho da Partícula , Ratos , Pele/efeitos dos fármacos , Absorção Cutânea
17.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499015

RESUMO

Tyrosinase is an enzyme that plays a crucial role in the melanogenesis of humans and the browning of food products. Thus, tyrosinase inhibitors that are useful to the cosmetic and food industries are required. In this study, we have used evolutionary chemical binding similarity (ECBS) to screen a virtual chemical database for human tyrosinase, which resulted in seven potential tyrosinase inhibitors confirmed through the tyrosinase inhibition assay. The tyrosinase inhibition percentage for three of the new actives was over 90% compared to 61.9% of kojic acid. From the structural analysis through pharmacophore modeling and molecular docking with the human tyrosinase model, the pi-pi interaction of tyrosinase inhibitors with conserved His367 and the polar interactions with Asn364, Glu345, and Glu203 were found to be essential for tyrosinase-ligand interactions. The pharmacophore features and the docking models showed high consistency, revealing the possible essential binding interactions of inhibitors to human tyrosinase. We have also presented the activity cliff analysis that successfully revealed the chemical features related to substantial activity changes found in the new tyrosinase inhibitors. The newly identified inhibitors and their structure-activity relationships presented here will help to identify or design new human tyrosinase inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Domínio Catalítico/genética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Ligantes , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/genética , Pironas/química , Pironas/farmacologia , Bibliotecas de Moléculas Pequenas , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Interface Usuário-Computador
18.
Molecules ; 26(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361637

RESUMO

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at -80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


Assuntos
Anti-Inflamatórios , Antineoplásicos Fitogênicos , Neoplasias/tratamento farmacológico , Reishi/química , Metabolismo Secundário , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Dessecação , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
19.
Immunity ; 34(3): 340-51, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21419663

RESUMO

Excessive responses to pattern-recognition receptors are prevented by regulatory mechanisms that affect the amounts and activities of the downstream signaling proteins. We report that activation of the transcription factor IRF3 by the ribonucleic acid sensor RIG-I was restricted by caspase-8-mediated cleavage of the RIP1 protein, which resulted in conversion of RIP1 from a signaling enhancer to a signaling inhibitor. The proteins RIP1 and caspase-8 were recruited to the RIG-I complex after viral infection and served antagonistic regulatory roles. Conjugation of ubiquitin chains to RIP1 facilitated assembly of the RIG-I complex, resulting in enhanced phosphorylation of IRF3. However, the ubiquitination of RIP1 also rendered it susceptible to caspase-8-mediated cleavage that yielded an inhibitory RIP1 fragment. The dependence of RIP1 cleavage on the same molecular change as that facilitating RIG-I signaling allows for RIG-I signaling to be restricted in its duration without compromising its initial activation.


Assuntos
Caspase 8/imunologia , Regulação da Expressão Gênica , Fator Regulador 3 de Interferon/imunologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , RNA Helicases/imunologia , Proteínas de Ligação a RNA/imunologia , Receptores do Ácido Retinoico/imunologia , Animais , Caspase 8/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Camundongos , Análise em Microsséries , RNA Helicases/metabolismo , Proteínas Repressoras/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Nat Prod ; 83(9): 2737-2742, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32940037

RESUMO

Calvatia nipponica is an extremely rare mushroom with a limited number of studies on its chemical components and biological activities published. Here we report the isolation of a novel sterol, calvatianone (1), possessing a 6/5/6/5-fused ring system with a contracted tetrahydrofuran B-ring, and four known steroids (2-5) from the fruiting bodies of C. nipponica. The structure of calvatianone including its absolute configuration was determined by NMR spectroscopic analyses, HR-ESIMS, gauge-including atomic orbital NMR chemical shift calculations, and ECD calculations. Ergosterol peroxide (3) and cyathisterol (4) suppressed the cell viability increase induced by 17ß-estradiol in MCF-7 breast cancer cell lines, suggesting a possible approach for these compounds to serve as ERα antagonists.


Assuntos
Agaricales/química , Carpóforos/química , Esteróis/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Dicroísmo Circular , Estradiol , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA