Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell ; 81(2): 281-292.e8, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296676

RESUMO

Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos/química , Fatores de Transcrição/química , Terminação da Transcrição Genética , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969836

RESUMO

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica , Biotinilação , Membrana Celular , Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Endopeptidases , Escherichia coli , Proteínas de Escherichia coli/química , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Estreptavidina
3.
Nature ; 560(7719): 447-452, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30111839

RESUMO

The olfactory system must recognize and discriminate amongst an enormous variety of chemicals in the environment. To contend with such diversity, insects have evolved a family of odorant-gated ion channels comprised of a highly conserved co-receptor (Orco) and a divergent odorant receptor (OR) that confers chemical specificity. Here, we present the single-particle cryo-electron microscopy structure of an Orco homomer from the parasitic fig wasp Apocrypta bakeri at 3.5 Å resolution, providing structural insight into this receptor family. Orco possesses a novel channel architecture, with four subunits symmetrically arranged around a central pore that diverges into four lateral conduits that open to the cytosol. The Orco tetramer has few inter-subunit interactions within the membrane and is bound together by a small cytoplasmic anchor domain. The minimal sequence conservation among ORs maps largely to the pore and anchor domain, shedding light on how the architecture of this receptor family accommodates its remarkable sequence diversity and facilitates the evolution of odour tuning.


Assuntos
Microscopia Crioeletrônica , Insetos/ultraestrutura , Receptores Odorantes/química , Receptores Odorantes/ultraestrutura , Motivos de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Insetos/química , Insetos/classificação , Ativação do Canal Iônico , Modelos Moleculares , Filogenia , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores Odorantes/metabolismo , Alinhamento de Sequência
4.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398072

RESUMO

Lipid bilayer provides a two-dimensional hydrophobic solvent milieu for membrane proteins in cells. Although the native bilayer is widely recognized as an optimal environment for folding and function of membrane proteins, the underlying physical basis remains elusive. Here, employing the intramembrane protease GlpG of Escherichia coli as a model, we elucidate how the bilayer stabilizes a membrane protein and engages the protein's residue interaction network compared to the nonnative hydrophobic medium, micelles. We find that the bilayer enhances GlpG stability by promoting residue burial in the protein interior compared to micelles. Strikingly, while the cooperative residue interactions cluster into multiple distinct regions in micelles, the whole packed regions of the protein act as a single cooperative unit in the bilayer. Molecular dynamics (MD) simulation indicates that lipids less efficiently solvate GlpG than detergents. Thus, the bilayerinduced enhancement of stability and cooperativity likely stems from the dominant intraprotein interactions outcompeting the weak lipid solvation. Our findings reveal a foundational mechanism in the folding, function, and quality control of membrane proteins. The enhanced cooperativity benefits function facilitating propagation of local structural perturbation across the membrane. However, the same phenomenon can render the proteins' conformational integrity vulnerable to missense mutations causing conformational diseases1,2.

5.
J Biol Chem ; 286(45): 39116-21, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21937441

RESUMO

The ß-barrel assembly machinery (BAM) complex of Escherichia coli is a multiprotein machine that catalyzes the essential process of assembling outer membrane proteins. The BAM complex consists of five proteins: one membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Here, we report the first crystal structure of a Bam lipoprotein complex: the essential lipoprotein BamD in complex with the N-terminal half of BamC (BamC(UN) (Asp(28)-Ala(217)), a 73-residue-long unstructured region followed by the N-terminal domain). The BamCD complex is stabilized predominantly by various hydrogen bonds and salt bridges formed between BamD and the N-terminal unstructured region of BamC. Sequence and molecular surface analyses revealed that many of the conserved residues in both proteins are found at the BamC-BamD interface. A series of truncation mutagenesis and analytical gel filtration chromatography experiments confirmed that the unstructured region of BamC is essential for stabilizing the BamCD complex structure. The unstructured N terminus of BamC interacts with the proposed substrate-binding pocket of BamD, suggesting that this region of BamC may play a regulatory role in outer membrane protein biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas Ligadas a Lipídeos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ligadas a Lipídeos/genética , Proteínas Ligadas a Lipídeos/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
6.
Biochemistry ; 50(6): 1081-90, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21207987

RESUMO

In Escherichia coli, the BAM complex catalyzes the essential process of assembling outer membrane proteins (OMPs). This complex consists of five proteins: one membrane-bound protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their importance in OMP biogenesis, there is currently a lack of functional and structural information on the BAM complex lipoproteins. BamE is the smallest but most conserved lipoprotein in the complex. The structural and dynamic properties of monomeric BamE (residues 21-133) were determined by NMR spectroscopy. The protein folds as two α-helices packed against a three-stranded antiparallel ß-sheet. The N-terminal (Ser21-Thr39) and C-terminal (Pro108-Asn113) residues, as well as a ß-hairpin loop (Val76-Gln89), are highly flexible on the subnanosecond time scale. BamE expressed and purified from E. coli also exists in a kinetically trapped dimeric state that has dramatically different NMR spectra, and hence structural features, relative to its monomeric form. The functional significance of the BamE dimer remains to be established. Structural comparison to proteins with a similar architecture suggests that BamE may play a role in mediating the association of the BAM complex or with the BAM complex substrates.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Propriedades de Superfície
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1350-8, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102230

RESUMO

In Gram-negative bacteria, the BAM complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one ß-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD and BamE. Here, the crystal structure of the C-terminal domain of E. coli BamC (BamC(C): Ala224-Ser343) refined to 1.5 Å resolution in space group H3 is reported. BamC(C) consists of a six-stranded antiparallel ß-sheet, three α-helices and one 3(10)-helix. Sequence and surface analysis reveals that most of the conserved residues within BamC(C) are localized to form a continuous negatively charged groove that is involved in a major crystalline lattice contact in which a helix from a neighbouring BamC(C) binds against this surface. This interaction is topologically and architecturally similar to those seen in the substrate-binding grooves of other proteins with BamC-like folds. Taken together, these results suggest that an identified surface on the C-terminal domain of BamC may serve as an important protein-binding surface for interaction with other BAM-complex components or substrates.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Ligadas a Lipídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Escherichia coli/isolamento & purificação , Proteínas Ligadas a Lipídeos/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Propriedades de Superfície
8.
J Cell Biol ; 217(5): 1643-1649, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29453311

RESUMO

Insulin receptor (IR) signaling plays a critical role in the regulation of metabolism and growth in multicellular organisms. IRs are unique among receptor tyrosine kinases in that they exist exclusively as covalent (αß)2 homodimers at the cell surface. Transmembrane signaling by the IR can therefore not be based on ligand-induced dimerization as such but must involve structural changes within the existing receptor dimer. In this study, using glycosylated full-length human IR reconstituted into lipid nanodiscs, we show by single-particle electron microscopy that insulin binding to the dimeric receptor converts its ectodomain from an inverted U-shaped conformation to a T-shaped conformation. This structural rearrangement of the ectodomain propagates to the transmembrane domains, which are well separated in the inactive conformation but come close together upon insulin binding, facilitating autophosphorylation of the cytoplasmic kinase domains.


Assuntos
Antígenos CD/metabolismo , Membrana Celular/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Antígenos CD/química , Antígenos CD/ultraestrutura , Humanos , Insulina/metabolismo , Ligantes , Ligação Proteica , Domínios Proteicos , Receptor de Insulina/química , Receptor de Insulina/ultraestrutura
9.
Nat Struct Mol Biol ; 25(7): 616-622, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29967539

RESUMO

Many polyubiquitinated proteins are extracted from membranes or complexes by the conserved ATPase Cdc48 (in yeast; p97 or VCP in mammals) before proteasomal degradation. Each Cdc48 hexamer contains two stacked ATPase rings (D1 and D2) and six N-terminal (N) domains. Cdc48 binds various cofactors, including the Ufd1-Npl4 heterodimer. Here, we report structures of the Cdc48-Ufd1-Npl4 complex from Chaetomium thermophilum. Npl4 interacts through its UBX-like domain with a Cdc48 N domain, and it uses two Zn2+-finger domains to anchor the enzymatically inactive Mpr1-Pad1 N-terminal (MPN) domain, homologous to domains found in several isopeptidases, to the top of the D1 ATPase ring. The MPN domain of Npl4 is located above Cdc48's central pore, a position similar to the MPN domain from deubiquitinase Rpn11 in the proteasome. Our results indicate that Npl4 is unique among Cdc48 cofactors and suggest a mechanism for binding and translocation of polyubiquitinated substrates into the ATPase.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas , Proteína com Valosina/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
Nat Commun ; 7: 12090, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27354316

RESUMO

Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes-UtpA and UtpB-interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.


Assuntos
Chaperonas Moleculares/fisiologia , RNA Fúngico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/fisiologia , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Methods Mol Biol ; 1329: 179-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427685

RESUMO

BamB, BamC, BamD, and BamE are lipoproteins that, along with the integral membrane protein BamA, form the ß-barrel assembly machinery (BAM) complex in the outer-membrane of Gram-negative bacteria. Elucidating the roles that these lipoproteins play in the ß-barrel assembly process requires both structural and functional studies that rely on milligram quantities of pure protein. Here, we describe a simple protocol for expressing individual BamB-BamE proteins in Escherichia coli and purifying them by nickel affinity and size-exclusion chromatography. This protocol yields pure proteins in amounts that are sufficient for crystallization trials, in vitro protein-protein interaction studies, NMR, and other biochemical experiments.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Cromatografia de Afinidade , Cromatografia em Gel , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Níquel/química
12.
J Comp Physiol B ; 184(2): 221-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24136006

RESUMO

Partial α-amylase gene sequences were determined and α-amylase gene expression was quantified in four species of carnivorous, omnivorous, and herbivorous prickleback fishes (family Stichaeidae) to assess the effects of ontogeny, diet, and species on expression of this gene. Pairwise comparison of α-amylase nucleotide sequences revealed 96-98 % identity, and comparison of amino acid portions revealed 93-95 % similarity among the four prickleback species. Expression was determined using in situ hybridization and intensity of expression quantified using image analysis. Alpha-amylase expression level was compared in three feeding categories of the four species: (1) small, wild-caught carnivorous juveniles; (2) larger, wild-caught juveniles of the carnivorous species and the three that had shifted to herbivory or omnivory; and (3) larger, juveniles produced by feeding a low-starch artificial diet to small juveniles until they reached the size of the larger wild-caught juveniles. The results showed no dietary effect in any species but significant ontogenetic and species-level effects in Cebidichthys violaceus, as well as in the sister species Xiphister mucosus and X. atropurpureus. Based on a phylogeny for the Stichaeidae produced for this study using two mtDNA genes and one nuclear gene, the ontogenetic dietary shifts to herbivory/omnivory evolved independently in C. violaceus and in the clade containing the two species of Xiphister. All three of these species increased α-amylase gene expression with increase in size and had higher expression than Anoplarchus purpurescens, which is a member of a third, stichaeid clade comprising carnivores. These results show the importance of α-amylase in the herbivores and omnivores.


Assuntos
Perciformes/fisiologia , alfa-Amilases/genética , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Animais , Carnivoridade , Dieta , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Amido
13.
Protein Sci ; 21(6): 751-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22549918

RESUMO

ß-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The ß-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of ß-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência
14.
J Mol Biol ; 406(5): 667-78, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21168416

RESUMO

In Gram-negative bacteria, the BAM (ß-barrel assembly machinery) complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one ß-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their role in outer membrane protein biogenesis, there is currently a lack of functional and structural information on the lipoprotein components of the BAM complex. Here, we report the first crystal structure of BamB, the largest and most functionally characterized lipoprotein component of the BAM complex. The crystal structure shows that BamB has an eight-bladed ß-propeller structure, with four ß-strands making up each blade. Mapping onto the structure the residues previously shown to be important for BamA interaction reveals that these residues, despite being far apart in the amino acid sequence, are localized to form a continuous solvent-exposed surface on one side of the ß-propeller. Found on the same side of the ß-propeller is a cluster of residues conserved among BamB homologs. Interestingly, our structural comparison study suggests that other proteins with a BamB-like fold often participate in protein or ligand binding, and that the binding interface on these proteins is located on the surface that is topologically equivalent to where the conserved residues and the residues that are important for BamA interaction are found on BamB. Our structural and bioinformatic analyses, together with previous biochemical data, provide clues to where the BamA and possibly a substrate interaction interface may be located on BamB.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/química , Lipoproteínas/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA