Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 169: 107171, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978552

RESUMO

Memory is stored in our brains over a temporally graded transition. With time, recently formed memories are transformed into remote memories for permanent storage; multiple brain regions, such as the hippocampus and neocortex, participate in this process. In this study, we aimed to understand the molecular mechanism of systems consolidation of memory and to investigate the brain regions that contribute to this regulation. We first carried out a contextual fear memory test using a transgenic mouse line, which expressed exogenously-derived Aplysia octopamine receptors in the forebrain region, such that, in response to octopamine treatment, cyclic adenosine monophosphate (cAMP) levels could be transiently elevated. From this experiment, we revealed that transient elevation of cAMP levels in the forebrain during systems consolidation led to an enhancement in remote fear memory and increased miniature excitatory synaptic currents in layer II/III of the anterior cingulate cortex (ACC). Furthermore, using an adeno-associated-virus-driven DREADD system, we investigated the specific regions in the forebrain that contribute to the regulation of memory transfer into long-term associations. Our results implied that transient elevation of cAMP levels was induced chemogenetically in the ACC, but not in the hippocampus, and showed a significant enhancement of remote memory. This finding suggests that neuronal activation during systems consolidation through the elevation of cAMP levels in the ACC contributes to remote memory enhancement.


Assuntos
AMP Cíclico/fisiologia , Medo/fisiologia , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Neurônios/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Mol Brain ; 14(1): 1, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402211

RESUMO

CCCTC-binding factor (CTCF) is a transcription factor that is involved in organizing chromatin structure. A reduction of CTCF expression is known to develop distinct clinical features. Furthermore, conditional knock out (cKO) study revealed reactive gliosis of astrocytes and microglia followed by age-dependent cell death in the excitatory neurons of CTCF cKO mice. To assess the cognitive ability in CTCF cKO mice of over 20 weeks of age, we examined pairwise discrimination (PD), PD reversal learning (PDr), and different paired-associate learning (dPAL) tasks using a touch screen apparatus. We found cognitive impairment in dPAL touch screen tests, suggesting that prolonged Ctcf gene deficiency results in cognitive deficits.


Assuntos
Fator de Ligação a CCCTC/deficiência , Transtornos Cognitivos/metabolismo , Neurônios/metabolismo , Animais , Comportamento Animal , Fator de Ligação a CCCTC/metabolismo , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA