Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 54(5): 1026-1040, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33048478

RESUMO

BACKGROUND/AIMS: Fractionated ionizing radiation (FIR) is an anti-cancer protocol widely applied for the treatment of diverse types of cancers to reduce damage to normal cells. However, cancer cells receiving multiple irradiations at low doses during FIR, often develop resistance to the therapy exhibiting malignant features including epithelial to mesenchymal transition (EMT). The present study has been performed to elucidate the mechanism of FIR-induced EMT signaling pathways and to identify a molecular target for radioresistance modulated by suppressors of cytokine signaling (SOCS)1. METHODS: Colorectal cancer cell lines received FIR with a daily dose of 2 Gy for 3 days. Generation of intracellular reactive oxygen species (ROS) and its role in EMT signaling induced by FIR were analyzed in SOCS1 over-expressing and knock-down cells. ROS were measured by DCF fluorescence using flow cytometry. Expression levels of EMT markers and signaling molecules were analyzed by Western blotting and confocal microscopy. RESULTS: FIR induced ROS and changes in EMT markers including down-regulation of E-cadherin with up-regulation of Twist and Snail. Pretreatment of anti-oxidant N-acetyl cysteine (NAC) abrogated the FIR-induced ROS generation and EMT response. Mechanistic studies indicated that the FIR-induced ROS-mediated EMT signaling proceeded through Akt→Src→Erk pathways. In accordance with the anti-ROS function, SOCS1 blocked the FIR-induced EMT and the associated signaling pathways through thioredoxin (Trx1) up-regulation. This is evidenced by the observation that Trx1 ablation in SOCS1 over-expressing cells negated the inhibitory action of SOCS1 by restoring the FIR-induced ROS and EMT markers. In addition, we have obtained data supporting that the FIR-induced ROS is derived from functional mitochondria and NADPH oxidases (Nox), which are both down-regulated by SOCS1. CONCLUSION: The results demonstrate that ROS signal acts as a mediator of the FIR-induced EMT. The data also suggest a potential anti-tumor function of SOCS1 by blocking the FIR therapy-induced resistance through the counter-regulation of ROS generating and scavenging systems.


Assuntos
Acetilcisteína/farmacologia , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Sequestradores de Radicais Livres/farmacologia , Humanos , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Células Tumorais Cultivadas
2.
Int J Syst Evol Microbiol ; 68(7): 2258-2264, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29809120

RESUMO

Strain GI5T was isolated from a surface seawater sample collected from Garorim Bay (West Sea, Republic of Korea). The isolated strain was aerobic, Gram-stain-negative, rod-shaped, motile by means of a polar flagellum, negative for catalase and weakly positive for oxidase. The optimum growth pH, salinity and temperature were determined to be pH 7.5-8.0, 3 % NaCl (w/v) and 25 °C, respectively; the growth ranges were pH 6.0-9.0, 1-7 % NaCl (w/v) and 18-40 °C. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that GI5T clustered within the family Alcanivoracaceae, and most closely with Alcanivorax dieseloleiB-5T and Alcanivorax marinusR8-12T (91.9 % and 91.6 % similarity, respectively). The major cellular fatty acids in GI5T were C18 : 1ω7c/C18 : 1ω6c (44.45 %), C16 : 1ω6c/C16 : 1ω7c (14.17 %) and C16 : 0 (10.19 %); this profile was distinct from those of the closely related species. The major respiratory quinone of GI5T was Q-8. The main polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Two putative alkane hydroxylase (alkB) genes were identified in GI5T. The G+C content of the genomic DNA of GI5T was determined to be 51.2 mol%. On the basis of the results of phenotypic, chemotaxonomic and phylogenetic studies, strain GI5T represents a novel species of a novel genus of the family Alcanivoracaceae, for which we propose the name Ketobacter alkanivorans gen. nov., sp. nov.; the type strain is GI5T (=KCTC 52659T=JCM 31835T).


Assuntos
Alcanivoraceae/classificação , Alcanos/metabolismo , Filogenia , Água do Mar/microbiologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
3.
Cytometry A ; 91(7): 704-712, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28375566

RESUMO

Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.


Assuntos
Bioensaio , Proliferação de Células/fisiologia , Técnicas de Cocultura , Citometria de Fluxo , Leucócitos Mononucleares/citologia , Bioensaio/métodos , Divisão Celular/fisiologia , Rastreamento de Células/métodos , Técnicas de Cocultura/métodos , Técnica de Diluição de Corante , Citometria de Fluxo/métodos , Fluoresceínas/metabolismo , Humanos
4.
Proc Natl Acad Sci U S A ; 110(17): 6865-70, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569274

RESUMO

Notch1 genes encode receptors for a signaling pathway that regulates various aspects of cell growth and differentiation; however, the role of Notch1 signaling in p38 mitogen-activated protein kinase (MAPK) signaling pathway is still not well defined. In this study, we found that Notch1 intracellular domain (Notch1-IC) prevents oxidative stress-induced cell death through the suppression of the Apoptosis signal-regulating kinase (ASK) 1 signaling pathway. Notch1-IC inhibited H2O2-induced activation of ASK1 and the activation of downstream kinases in the p38 MAPK signaling cascade. The results of both in vivo binding and kinase studies have revealed that ASK1 is the direct target of Notch1-IC, whereas it produced no effect on either MAP kinase kinase (MKK) 3 or p38 MAPK. Notch1-IC blocked both the homooligomerization of ASK1 and inhibited ASK1 activity. Furthermore, Notch1-IC facilitated the translocation of activated ASK1 toward the nucleus. Notch1 knockdown was determined to be highly susceptible to oxidative stress-induced activation of ASK1-MKK3/MKK6-p38 MAPK signaling cascade and cell death. Taken together, our findings suggest that Notch1-IC may act as a negative regulator in ASK1 signaling cascades.


Assuntos
Morte Celular/fisiologia , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Fracionamento Celular , Linhagem Celular , Primers do DNA/genética , Escherichia coli , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptor Notch1/fisiologia , Transdução de Sinais/genética
5.
J Neurochem ; 134(5): 799-810, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25996556

RESUMO

The gamma-secretase is a multiprotein complex that cleaves many type-I membrane proteins, such as the Notch receptor and the amyloid precursor protein. Nicastrin (NCT) is an essential component of the multimeric gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we found that Akt1 markedly regulated the protein stability of NCT. Importantly, the kinase activity of Akt1 was essential for the inhibition of gamma-secretase activity through degradation of NCT. Notably, the protein level of endogenous NCT was higher in shAkt1-expressing cells than in shCon-expressing cells. Akt1 physically interacted with NCT and mediated its degradation through proteasomal and lysosomal pathways. We also found that Akt1 phosphorylates NCT at Ser437, resulting in a significant reduction in NCT protein stability. Importantly, a phospho-deficient mutation in NCT at Ser437 stabilized its protein levels. Collectively, our results reveal that Akt1 functions as a negative regulator of the gamma-secretase activity through phosphorylation and degradation of NCT. Generation of the amyloid peptide (A-beta) and the amyloid precursor protein (APP) intracellular domain (AICD) can happen by sequential proteolysis of APP by beta and gamma-secretase. The gamma-secretase complex consists of four essential proteins: presenilin (PS1 or PS2), presenilin enhancer 2 (PEN-2), anterior pharynx-defective 1 (APH-1), and the Nicastrin (NCT). NCT can interact and be phosphorylated by Akt1, and phosphorylated NCT promotes its proteasomal and lysosomal degradation. As a result, Akt1 plays role in reducing gamma-secretase activity through phosphorylation-dependent regulation of NCT protein degradation.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo
6.
J Neuroinflammation ; 12: 127, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26126965

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS: Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS: ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS: Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Progressão da Doença , Interleucina-2/sangue , Interleucina-5/sangue , Interleucina-6/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Glutationa/sangue , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Nitritos/sangue , Prognóstico
7.
Ann Rheum Dis ; 74(1): 267-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24255545

RESUMO

OBJECTIVE: To test the hypothesis that Notch signalling plays a role in the pathogenesis of rheumatoid arthritis (RA) and to determine whether pharmacological inhibition of Notch signalling with γ-secretase inhibitors can ameliorate the RA disease process in an animal model. METHODS: Collagen-induced arthritis was induced in C57BL/6 or Notch antisense transgenic mice by immunisation with chicken type II collagen (CII). C57BL/6 mice were administered with different doses of inhibitors of γ-secretase, an enzyme required for Notch activation, at disease onset or after onset of symptoms. Severity of arthritis was monitored by clinical and histological scores, and in vivo non-invasive near-infrared fluorescence (NIRF) images. Micro-CT was used to confirm joint destruction. The levels of CII antibodies and cytokines in serum were determined by ELISA and bead-based cytokine assay. The expression levels of cytokines were studied by quantitative PCR in rheumatoid synovial fibroblasts. RESULTS: The data show that Notch signalling stimulates synoviocytes and accelerates their production of proinflammatory cytokines and immune responses involving the upregulation of IgG1 and IgG2a. Pharmacological inhibition of γ-secretase and antisense-mediated knockdown of Notch attenuates the severity of inflammatory arthritis, including arthritis indices, paw thickness, tissue damage and neutrophil infiltration, and reduces the levels of active NF-κB, ICAM-1, proinflammatory cytokines and matrix metalloproteinase-3 activity in the mouse model of RA. CONCLUSIONS: These results suggest that Notch is involved in the pathogenesis of RA and that inhibition of Notch signalling is a novel approach for treating RA.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Citocinas/imunologia , Receptores Notch/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/imunologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Citocinas/efeitos dos fármacos , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Notch/antagonistas & inibidores , Receptores Notch/efeitos dos fármacos , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
8.
J Immunol ; 189(12): 5561-71, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23152563

RESUMO

Suppressors of cytokine signaling (SOCS) are known as negative regulators of cytokine- and growth factor-induced signal transduction. Recently they have emerged as multifunctional proteins with regulatory roles in inflammation, autoimmunity, and cancer. We have recently reported that SOCS1 has antiapoptotic functions against the TNF-α- and the hydrogen peroxide-induced T cell apoptosis through the induction of thioredoxin, which protects protein tyrosine phosphatases and attenuates Jaks. In this study, we report that SOCS, on the contrary, promote death receptor Fas-mediated T cell apoptosis. The proapoptotic effect of SOCS1 was manifested with increases in Fas-induced caspase-8 activation, truncated Bid production, and mitochondrial dysfunctions. Both caspase-8 inhibitor c-Flip and mitochondrial antiapoptotic factor Bfl-1 were significantly reduced by SOCS1. These proapoptotic responses were not associated with changes in Jak or p38/Jnk activities but were accompanied with downregulation of NF-κB and NF-κB-dependent reporter gene expression. Indeed, p65 degradation via ubiquitination was accelerated in SOCS1 overexpressing cells, whereas it was attenuated in SOCS1 knockdown cells. With high NF-κB levels, the SOCS1-ablated cells displayed resistance against Fas-induced apoptosis, which was abrogated upon siBfl-1 transfection. The results indicate that the suppression of NF-κB-dependent induction of prosurvival factors, such as Bfl-1 and c-Flip, may serve as a mechanism for SOCS action to promote Fas-mediated T cell apoptosis. SOCS3 exhibited a similar proapoptotic function. Because both SOCS1 and SOCS3 are induced upon TCR stimulation, SOCS would play a role in activation-induced cell death by sensitizing activated T cells toward Fas-mediated apoptosis to maintain T cell homeostasis.


Assuntos
Apoptose/imunologia , Regulação para Baixo/imunologia , Proteínas Mitocondriais/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Receptor fas/fisiologia , Animais , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica/imunologia , Células HCT116 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Antígenos de Histocompatibilidade Menor , Proteínas Mitocondriais/biossíntese , NF-kappa B/biossíntese , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Regulação para Cima/imunologia
9.
J Clin Lab Anal ; 28(5): 409-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24652818

RESUMO

BACKGROUND: Mycobacterium abscessus group belongs to a group of rapidly growing mycobacteria (RGM) and, following Mycobacterium avium complex, is the second most common pathogen responsible for lung disease caused by nontuberculous mycobacteria (NTM). Clarithromycin is known to be the key drug in the treatment of M. abscessus group disease, but a high failure rate of treatment response is reported due to clarithromycin inducible resistance. METHODS: Using the results from a clarithromycin susceptibility test we examined the proportion of clarithromycin inducible resistant M. abscessus (sensu stricto; hereafter referred to as M. abscessus) clinical strains. Also, we attempted to detect the clarithromycin resistant strains, using the amplification refractory mutation system-PCR (ARMS-PCR) and real-time PCR methods for rapid detection of single-nucleotide polymorphisms (SNPs) at position 28 (T or C) of the erm(41) gene of M. abscessus leading to resistance to clarithromycin. RESULTS: Of the 157 M. abscessus clinical strains, clarithromycin susceptible, resistant, and inducible resistant strains accounted for 10.83% (n = 17), 22.29% (n = 35), and 66.88% (n = 105), respectively. Clarithromycin resistant strains were able to separate from clarithromycin susceptible strains by ARMS-PCR and real-time PCR identical to DNA sequence analysis. CONCLUSION: Most M. abscessus clinical strains in Korea are resistant to clarithromycin, and ARMS-PCR and real-time PCR are useful tools for the rapid detection of single-nucleotide polymorphisms (SNPs) at position 28 of the erm(41) gene.


Assuntos
Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana/métodos , Claritromicina/farmacologia , Farmacorresistência Bacteriana/genética , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Reação em Cadeia da Polimerase , DNA Bacteriano/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Polimorfismo de Nucleotídeo Único/genética , República da Coreia , Fatores de Tempo
10.
Mol Pharm ; 10(12): 4728-38, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24191685

RESUMO

Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium's polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics.


Assuntos
Íons/química , Íons/farmacologia , Lítio/química , Lítio/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Íons/farmacocinética , Lítio/farmacocinética , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Tecnologia Farmacêutica/métodos
11.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989590

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons. Here, we developed a knock-in mouse that expresses the recombinase FlpO in TRPA1-expressing cells. We crossed the TRPA1Flp mouse with the R26ai65f mouse that expresses tdTomato in a Flp-sensitive manner. We found tdTomato expression correlated well with TRPA1 mRNA expression and sensitivity to TRPA1 agonists in subsets of TRPV1 (transient receptor potential vanilloid receptor type 1)-expressing neurons in the vagal ganglia and dorsal root ganglia (DRGs), although tdTomato expression efficiency was limited in DRG. We observed tdTomato-expressing afferent fibers centrally (in the medulla and spinal cord) and peripherally in the esophagus, gut, airways, bladder, and skin. Furthermore, chemogenetic activation of TRPA1-expressing nerves in the paw evoked flinching behavior. tdTomato expression was very limited in other cell types. We found tdTomato in subepithelial cells in the gut mucosa but not in enterochromaffin cells. tdTomato was also observed in supporting cells within the cochlea, but not in hair cells. Lastly, tdTomato was occasionally observed in neurons in the somatomotor cortex and the piriform area, but not in astrocytes or vascular endothelium. Thus, this novel mouse strain may be useful for mapping and manipulating TRPA1-expressing cells and deciphering the role of TRPA1 in physiological and pathophysiological processes.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Camundongos , Gânglios Espinais/metabolismo , Expressão Gênica , Células Receptoras Sensoriais/metabolismo , Pele , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
12.
Eur J Immunol ; 41(2): 461-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21268015

RESUMO

IFN-α and IL-4 induce Th1 and Th2 responses, respectively, and often display antagonistic actions against each other. To elucidate the molecular mechanism of counter-regulation, we have investigated the signal interception by IFN-α and IL-4, employing a human B-cell line Ramos, sensitive to both cytokines. In these cells, IFN-α effectively inhibited IL-4-induced Fc epsilon receptor II (CD23) expression, whereas IL-4 suppressed IFN-α-mediated IRF7 expression. The counter-regulatory action by IL-4 and IFN-α proceeded with a delayed kinetics requiring 4 h. Notably, IFN-α did not affect the IL-4-induced tyrosine phosphorylation of STAT6, but induced a time-dependent cytoplasmic accumulation of phosphotyrosine(pY)-STAT6 and a corresponding decrease in nuclear pY-STAT6. By confocal analysis and co-immunoprecipitation assays, we demonstrated the colocalization and molecular interaction of IL-4-induced pY-STAT6 with IFN-α-induced pY-STAT2:p48 in the cytosol. In addition, the over-expression of STAT2 or STAT6 induced the concomitant cytosolic accumulation of pY-STAT6 or pY-STAT2, leading to the suppression of IL-4-induced CD23 or IFN-α-induced IRF7 gene expression, respectively. Our data suggest that the signals ensued by IFN-α and IL-4 induce cytoplasmic sequestration of IL-4-activated STAT6 and IFN-α-activated STAT2:p48 in B cells through the formation of pY-STAT6:pY-STAT2:p48 complex, which provides a novel mechanism by which IFN-α and IL-4 cross-regulate their signaling into the nucleus.


Assuntos
Citosol/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon-alfa/farmacologia , Interleucina-4/farmacologia , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Interferon gama/farmacologia , Cinética , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/fisiologia , Receptores de IgE/genética , Receptores de IgE/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT6/genética , Transfecção , Tirosina/metabolismo
13.
Environ Sci Pollut Res Int ; 29(2): 2136-2145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363167

RESUMO

In this study, the arsenic (As) removal characteristics of a Mn-Fe binary coating formed on waste sand filter of an acid mine drainage treatment facility are investigated. Owing to the Mn-Fe binary coating forming on the surfaces of the sand grains, its potential for arsenic removal, particularly As(III), was evaluated and characterized through batch experiments and x-ray absorption spectroscopy. Sorption isotherms reveal that the Mn-Fe binary coating exhibits comparable removal efficiencies for As(III) and As(V) under low initial As concentrations. However, at higher initial As(III) and As(V) concentrations, the As(III) removal efficiency increases because of newly formed active adsorption sites from reductive dissolution of Mn. The oxidation of the As(III) and reduction of the Mn oxide phases are verified through As K-edge and Mn K-edge X-ray absorption near edge fine structure analysis. The outstanding As(III) removal efficiency of the Mn-Fe binary coating suggests synergy of Fe- and Mn-oxides, highlighting a potential application for this coating system. The natural formation of binary coating through acid mine drainage treatment reported in this study indicates that similar coating can form naturally in other environments, thus, providing plausible natural attenuation processes for arsenic immobilization.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Oxirredução , Óxidos , Poluentes Químicos da Água/análise
14.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35365503

RESUMO

The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.


Assuntos
Gânglios Espinais , Nervo Vago , Vias Aferentes , Animais , Pulmão/inervação , Pulmão/metabolismo , Camundongos , Neurônios , Neurônios Aferentes/fisiologia , Gânglio Nodoso , Nervo Vago/metabolismo
15.
BMB Rep ; 55(4): 198-203, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35321782

RESUMO

As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels. [BMB Reports 2022; 55(4): 198-203].


Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Citocinas/metabolismo , Humanos , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
16.
Immunology ; 129(4): 578-88, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20102415

RESUMO

To explore whether bacterial secreted 4-hydroxy-2-alkylquinolines (HAQs) can regulate host innate immune responses, we used the extracts of bacterial culture supernatants from a wild-type (PA14) and two mutants of Pseudomonas aeruginosa that have defects in making HAQs. Surprisingly, the extract of supernatants from the P. aeruginosa pqsA mutant that does not make HAQs showed strong stimulating activity for the production of innate cytokines such as tumour necrosis factor-alpha and interleukin-6 in the J774A.1 mouse monocyte/macrophage cell line, whereas the extract from the wild-type did not. The addition of 4-hydroxy-2-heptylquinoline (HHQ) or 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal) to mammalian cell culture media abolished this stimulating activity of the extracts of supernatants from the pqsA mutant on the expression of innate cytokines in J774A.1 cells and in the primary bronchoalveolar lavage cells from C57BL/6 mice, suggesting that HHQ and PQS can suppress the host innate immune responses. The pqsA mutant showed reduced dissemination in the lung tissue compared with the wild-type strain in a mouse in vivo intranasal infection model, suggesting that HHQ and PQS may play a role in the pathogenicity of P. aeruginosa. HHQ and PQS reduced the nuclear factor-kappaB (NF-kappaB) binding to its binding sites and the expression of NF-kappaB target genes, and PQS delayed inhibitor of kappaB degradation, indicating that the effect of HHQ and PQS was mediated through the NF-kappaB pathway. Our results suggest that HHQ and PQS produced by P. aeruginosa actively suppress host innate immune responses.


Assuntos
Regulação para Baixo/imunologia , Hidroxiquinolinas/imunologia , Imunidade Inata/imunologia , NF-kappa B/metabolismo , Pseudomonas aeruginosa/imunologia , Percepção de Quorum/imunologia , Animais , Sobrevivência Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Hidroxiquinolinas/química , Hidroxiquinolinas/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/química
17.
Microb Pathog ; 49(4): 174-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20595074

RESUMO

We have previously shown that PQS and HHQ, two quorum sensing molecules, can down-regulate host the innate immune responses and that this is mediated through the NF-kappaB pathway. In this study, to search for a comprehensive set of genes regulated by these quorum sensing molecules, we performed a global gene expression analysis using DNA microarray in J774A.1 monocyte/macrophage cells line. The expression of these genes was confirmed by RT-PCR. We found that PQS and HHQ down-regulated the expression of genes involved in immune responses and transcription as well as other functions, some of which are downstream of NF-kappaB pathway consistent with our previous results. PQS and HHQ inhibited LPS-induced morphological change and nitric oxide production, suggesting that they inhibit macrophage activation. However, PQS and HHQ did not affect apoptosis, suggesting that their effects on immune system are not from general alteration of cell function. This study provides insight how the quorum sensing molecules influence host cells.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hidroquinonas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Pseudomonas aeruginosa/patogenicidade , Quinolonas/metabolismo , Animais , Fatores Imunológicos/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Pseudomonas aeruginosa/imunologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669344

RESUMO

The ATP-sensitive P2X2 ionotropic receptor plays a critical role in a number of signal processes including taste and hearing, carotid body detection of hypoxia, the exercise pressor reflex and sensory transduction of mechanical stimuli in the airways and bladder. Elucidation of the role of P2X2 has been hindered by the lack of selective tools. In particular, detection of P2X2 using established pharmacological and biochemical techniques yields dramatically different expression patterns, particularly in the peripheral and central nervous systems. Here, we have developed a knock-in P2X2-cre mouse, which we crossed with a cre-sensitive tdTomato reporter mouse to determine P2X2 expression. P2X2 was found in more than 80% of nodose vagal afferent neurons, but not in jugular vagal afferent neurons. Reporter expression correlated in vagal neurons with sensitivity to α,ß methylene ATP (αßmATP). P2X2 was expressed in 75% of petrosal afferents, but only 12% and 4% of dorsal root ganglia (DRG) and trigeminal afferents, respectively. P2X2 expression was limited to very few cell types systemically. Together with the central terminals of P2X2-expressing afferents, reporter expression in the CNS was mainly found in brainstem neurons projecting mossy fibers to the cerebellum, with little expression in the hippocampus or cortex. The structure of peripheral terminals of P2X2-expressing afferents was demonstrated in the tongue (taste buds), carotid body, trachea and esophagus. P2X2 was observed in hair cells and support cells in the cochlear, but not in spiral afferent neurons. This mouse strain provides a novel approach to the identification and manipulation of P2X2-expressing cell types.


Assuntos
Neurônios Aferentes , Receptores Purinérgicos P2 , Trifosfato de Adenosina , Animais , Gânglios Espinais , Camundongos , Neurônios , Reflexo
19.
J Hazard Mater ; 393: 122373, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126425

RESUMO

This study investigated mercury contamination with respect to the sediment characteristics in Gumu Creek near the Pohang Industrial Complex, South Korea. The contaminated sediment had high levels of Hg, exceeding 250 mg Hg/kg sediment at the sampling position, and high concentrations of iron, sulfur, and organic carbon under extreme anaerobic conditions. The anoxic condition of the sediment produced large amounts of FeS. Hg L3-edge EXAFS analysis revealed that FeS controlled the Hg species in the sediment mainly as ß-HgS like precipitation or Hg-S complexation. We also speculated that the presence of FeS induced the abiotic reduction of Hg(II) to Hg(0) and consequently suppressed the formation of highly toxic methylated mercury species. The results obtained in this study are mostly consistent with those reported in previous studies of geochemical reactions of FeS in controlling Hg(II) under pure FeS mineral systems under laboratory scenarios. This study demonstrates that the laboratory controlled reaction scenarios can explain the field behavior of Hg in the contaminated anoxic sediment of the Gumu Creek site.

20.
Respir Physiol Neurobiol ; 278: 103446, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360368

RESUMO

Inflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough). We have previously shown modulation of peripheral nerve terminal mitochondria by antimycin A causes hyperexcitability in TRPV1-expressing bronchopulmonary C-fibers through the activation of protein kinase C (PKC). Here, we have investigated the PKC isoform responsible for this signaling. We found PKCß1, PKCδ and PKCε were expressed by many vagal neurons, with PKCα and PKCß2 expressed by subsets of vagal neurons. In dissociated vagal neurons, antimycin A caused translocation of PKCα but not the other isoforms, and only in TRPV1-lineage neurons. In bronchopulmonary C-fiber recordings, antimycin A increased the number of action potentials evoked by α,ß-methylene ATP. Selective inhibition of PKCα, PKCß1 and PKCß2 with 50 nM bisindolylmaleimide I prevented the antimycin-induced bronchopulmonary C-fiber hyperexcitability, whereas selective inhibition of only PKCß1 and PKCß2 with 50 nM LY333531 had no effect. We therefore conclude that PKCα is required for antimycin-induced increases in bronchopulmonary C-fiber excitability.


Assuntos
Antimicina A/farmacologia , Brônquios/inervação , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Proteína Quinase C-alfa/efeitos dos fármacos , Nervo Vago , Animais , Pulmão/inervação , Camundongos , Fibras Nervosas Amielínicas/metabolismo , Neurônios/metabolismo , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA