Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
PLoS Pathog ; 19(2): e1011193, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821596

RESUMO

Traditionally, whooping cough or pertussis caused by the obligate human pathogen Bordetella pertussis (Bp) is described as an acute disease with severe symptoms. However, many individuals who contract pertussis are either asymptomatic or show very mild symptoms and yet can serve as carriers and sources of bacterial transmission. Biofilms are an important survival mechanism for bacteria in human infections and disease. However, bacterial determinants that drive biofilm formation in humans are ill-defined. In the current study, we show that Bp infection of well-differentiated primary human bronchial epithelial cells leads to formation of bacterial aggregates, clusters, and highly structured biofilms which are colocalized with cilia. These findings mimic observations from pathological analyses of tissues from pertussis patients. Distinct arrangements (mono-, bi-, and tri-partite) of the polysaccharide Bps, extracellular DNA, and bacterial cells were visualized, suggesting complex heterogeneity in bacteria-matrix interactions. Analyses of mutant biofilms revealed positive roles in matrix production, cell cluster formation, and biofilm maturity for three critical Bp virulence factors: Bps, filamentous hemagglutinin, and adenylate cyclase toxin. Adherence assays identified Bps as a new Bp adhesin for primary human airway cells. Taken together, our results demonstrate the multi-factorial nature of the biofilm extracellular matrix and biofilm development process under conditions mimicking the human respiratory tract and highlight the importance of model systems resembling the natural host environment to investigate pathogenesis and potential therapeutic strategies.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/genética , Coqueluche/microbiologia , Biofilmes , Epitélio , Sistema Respiratório
2.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716885

RESUMO

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

3.
BMC Womens Health ; 24(1): 134, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378535

RESUMO

BACKGROUND: This study aimed to develop and evaluate the validity and reliability of a self-management self-efficacy for premature birth prevention (SMSE-PBP) in women of childbearing age (WCA). METHODS: Instrument development and validation were undertaken in three phases: conceptualization, item generation and evaluation of content validity, and evaluation of construct and concurrent validity and reliability. Data were analyzed using exploratory and second-order confirmatory factor analyses, and concurrent validity was examined using Pearson's correlation coefficients. The reliability was analyzed using omega hierarchical and Cronbach's ⍺. RESULTS: Content validity was assessed by experts and cognitive interviews of WCA. The SMSE-PBP consists of a second-order 3-dimension and 10-factor scale with 60 items; therefore, the construct and concurrent validity of the SMSE-PBP were supported. The omega values were 0.93 for pre-pregnancy SMSE-PBP, 0.92 for pregnancy SMSE-PBP, and 0.94 for hospital SMSE-PBP. Cronbach's ⍺ was 0.88 for pre-pregnancy SMSE-PBP, 0.96 for pregnancy SMSE-PBP, and 0.96 for hospital SMSE-PBP. CONCLUSIONS: The SMSE-PBP scale is valid and reliable for WCA; it is helpful for WCA and health professionals to assess women's SMSE-PBP and pre-pregnancy, pregnancy, or hospital SMSE-PBP. The next steps should include assessing the relationship with pregnancy health behaviors.


Assuntos
Nascimento Prematuro , Autogestão , Gravidez , Humanos , Feminino , Autoeficácia , Reprodutibilidade dos Testes , Nascimento Prematuro/prevenção & controle , Inquéritos e Questionários , Psicometria/métodos
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34353890

RESUMO

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , COVID-19/imunologia , COVID-19/terapia , Inibidores Enzimáticos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Tratamento Farmacológico da COVID-19
5.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047734

RESUMO

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

6.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L666-L676, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852930

RESUMO

Respiratory viruses, such as influenza, decrease airway cilia function and expression, which leads to reduced mucociliary clearance and inhibited overall immune defense. Ubiquitination is a posttranslational modification using E3 ligases, which plays a role in the assembly and disassembly of cilia. We examined the role of membrane-associated RING-CH (MARCH) family of E3 ligases during influenza infection and determined that MARCH10, specifically expressed in ciliated epithelial cells, is significantly decreased during influenza infection in mice, human lung epithelial cells, and human lung tissue. Cellular depletion of MARCH10 in differentiated human bronchial epithelial cells (HBECs) using CRISPR/Cas9 showed a decrease in ciliary beat frequency. Furthermore, MARCH10 cellular knockdown in combination with influenza infection selectively decreased immunoreactive levels of the ciliary component, dynein axonemal intermediate chain 1. Cellular overexpression of MARCH10 significantly decreased influenza hemagglutinin protein levels in the differentiated HBECs and knockdown of MARCH10 increased IL-1ß cytokine expression, whereas overexpression had the reciprocal effect. These findings suggest that MARCH10 may have a protective role in airway pulmonary host defense and innate immunity during influenza infection.


Assuntos
Influenza Humana , Orthomyxoviridae , Camundongos , Humanos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , Influenza Humana/metabolismo , Ubiquitina/metabolismo , Ubiquitina/farmacologia , Pulmão , Cílios/metabolismo
7.
J Med Virol ; 95(3): e28639, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36879533

RESUMO

Mumps is the second-most reported infectious disease in South Korea; however, due to the low pathogen confirmation rate in laboratory diagnoses, we proposed a method for reevaluating the high incidence rate via the laboratory verification of other viral diseases. In 2021, 63 cases of pharyngeal or cheek mucosal swabs of suspected mumps cases in Gwangju, South Korea, were assessed for causative pathogens using massive simultaneous pathogen testing. More than one respiratory virus was detected in 60 cases (95.2%), 44 (73.3%) of which were codetected. Human rhinovirus was detected in 47 cases, followed by human herpesvirus (HHV)6 in 30; HHV4 (17), human bocavirus (17), HHV5 (10), and human parainfluenza virus 3 (6) were also detected. Our findings suggest the need for further investigations on the pathogenesis of diseases mimicking mumps, which are considered to aid with appropriate public health responses, treatment, and the prevention of infectious disease outbreaks.


Assuntos
Herpesvirus Humano 6 , Bocavirus Humano , Caxumba , Viroses , Vírus , Humanos , Caxumba/diagnóstico , Caxumba/epidemiologia , Viroses/diagnóstico , Viroses/epidemiologia , República da Coreia/epidemiologia , Vírus da Caxumba
8.
FASEB J ; 36(5): e22270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35412656

RESUMO

Mutations in the CFTR gene lead to cystic fibrosis, a genetic disease associated with chronic infection and inflammation and ultimately respiratory failure. The most common CF-causing mutation is F508del and CFTR modulators (correctors and potentiators) are being developed to rescue its trafficking and activity defects. However, there are currently no modulators that stabilize the rescued membrane F508del-CFTR which is endocytosed and quickly degraded resulting in a shorter half-life than wild-type (WT). We previously reported that the extracellular signal-regulated kinase (ERK) MAPK pathway is involved in CFTR degradation upon cigarette smoke exposure. Interestingly, we found that ERK phosphorylation was increased in CF human bronchial epithelial (HBE) cells (CF-HBE41o- and primary CF-HBE) compared to non-CF controls, and this was likely due to signaling by the epidermal growth factor receptor (EGFR). EGFR can be activated by several ligands, and we provide evidence that amphiregulin (AREG) is important for activating this signaling axis in CF. The natural osmolyte ectoine stabilizes membrane macromolecules. We show that ectoine decreases ERK phosphorylation, increases the half-life of rescued CFTR, and increases CFTR-mediated chloride transport in combination with the CFTR corrector VX-661. Additionally, ectoine reduces production of AREG and interleukin-8 by CF primary bronchial epithelial cells. In conclusion, EGFR-ERK signaling negatively regulates CFTR and is hyperactive in CF, and targeting this axis with ectoine may prove beneficial for CF patients.


Assuntos
Diamino Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Diamino Aminoácidos/farmacologia , Diamino Aminoácidos/uso terapêutico , Benzodioxóis , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis , Mutação
9.
Inorg Chem ; 62(26): 10279-10290, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37342900

RESUMO

The catalytic redox activity of Cu(II) bound to the amino-terminal copper and nickel (ATCUN) binding motif (Xxx-Zzz-His, XZH) is stimulating the development of catalytic metallodrugs based on reactive oxygen species (ROS)-mediated biomolecule oxidation. However, low Cu(I) availability resulting from the strong Cu(II) binding affinity of the ATCUN motif is regarded as a limitation to efficient ROS generation. To address this, we replaced the imidazole moiety (pKa 7.0) of Gly-Gly-His-NH2 (GGHa, a canonical ATCUN peptide) with thiazole (pKa 2.7) and oxazole (pKa 0.8), yielding GGThia and GGOxa, respectively. A newly synthesized amino acid, Fmoc-3-(4-oxazolyl)-l-alanine, served as a histidine surrogate featuring an azole ring with the lowest pKa among known analogues. Despite similar square-planar Cu(II)-N4 geometries being observed for the three Cu(II)-ATCUN complexes by electron paramagnetic resonance spectroscopy and X-ray crystallography, the azole modification enabled the Cu(II)-ATCUN complexes to exhibit significant rate enhancement for ROS-mediated DNA cleavage. Further analyses based on Cu(I)/Cu(II) binding affinities, electrochemical measurements, density functional theory calculations, and X-ray absorption spectroscopy indicated that the azole modification enhanced the accessibility of the Cu(I) oxidation state during ROS generation. Our oxazole/thiazole-containing ATCUN motifs provide a new design strategy for peptide ligands with modulated N donor ability, with potential applications in the development of ROS-mediated metallodrugs.


Assuntos
Cobre , Histidina , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Oxazóis/farmacologia , Peptídeos
10.
Proc Natl Acad Sci U S A ; 117(50): 31631-31638, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257572

RESUMO

Molybdenum sulfide (MoS2) is the most widely studied transition-metal dichalcogenide (TMDs) and phase engineering can markedly improve its electrocatalytic activity. However, the selectivity toward desired products remains poorly explored, limiting its application in complex chemical reactions. Here we report how phase engineering of MoS2 significantly improves the selectivity for nitrite reduction to nitrous oxide, a critical process in biological denitrification, using continuous-wave and pulsed electron paramagnetic resonance spectroscopy. We reveal that metallic 1T-MoS2 has a protonation site with a pKa of ∼5.5, where the proton is located ∼3.26 Šfrom redox-active Mo site. This protonation site is unique to 1T-MoS2 and induces sequential proton-electron transfer which inhibits ammonium formation while promoting nitrous oxide production, as confirmed by the pH-dependent selectivity and deuterium kinetic isotope effect. This is atomic-scale evidence of phase-dependent selectivity on MoS2, expanding the application of TMDs to selective electrocatalysis.

11.
Curr Issues Mol Biol ; 44(1): 301-308, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723401

RESUMO

Immunocytokines, antibody-cytokine fusion proteins, have the potential to improve the therapeutic index of cytokines by delivering the cytokine to the site of localized tumor cells using antibodies. In this study, we produced a recombinant anti-programmed death-ligand 1 (PD-L1) scFv, an antibody fragment against PD-L1 combined with a Neo2/15, which is an engineered interleukin with superior function using an E. coli expression system. We expressed the fusion protein in a soluble form and purified it, resulting in high yield and purity. The high PD-L1-binding efficiency of the fusion protein was confirmed via enzyme-linked immunosorbent assay, suggesting the application of this immunocytokine as a cancer-related therapeutic agent.

12.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177202

RESUMO

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts HIV-1 replication by limiting the intracellular deoxynucleoside triphosphate (dNTP) pool. SAMHD1 also suppresses the activation of NF-κB in response to viral infections and inflammatory stimuli. However, the mechanisms by which SAMHD1 negatively regulates this pathway remain unclear. Here, we show that SAMHD1-mediated suppression of NF-κB activation is modulated by two key mediators of NF-κB signaling, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and transforming growth factor ß-activated kinase 1 (TAK1). We compared NF-κB activation stimulated by interleukin (IL)-1ß in monocytic THP-1 control and SAMHD1 knockout (KO) cells with and without partial TRAF6 knockdown (KD), or in cells treated with TAK1 inhibitors. Relative to control cells, IL-1ß-treated SAMHD1 KO cells showed increased phosphorylation of the inhibitor of NF-κB (IκBα), an indication of pathway activation, and elevated levels of TNF-α mRNA. Moreover, SAMHD1 KO combined with TRAF6 KD or pharmacological TAK1 inhibition reduced IκBα phosphorylation and TNF-α mRNA to the level of control cells. SAMHD1 KO cells infected with single-cycle HIV-1 showed elevated infection and TNF-α mRNA levels compared to control cells, and the effects were significantly reduced by TRAF6 KD or TAK1 inhibition. We further demonstrated that overexpressed SAMHD1 inhibited TRAF6-stimulated NF-κB reporter activity in HEK293T cells in a dose-dependent manner. SAMHD1 contains a nuclear localization signal (NLS), but an NLS-defective SAMHD1 exhibited a suppressive effect similar to the wild-type protein. Our data suggest that the TRAF6-TAK1 axis contributes to SAMHD1-mediated suppression of NF-κB activation and HIV-1 infection.IMPORTANCE Cells respond to pathogen infection by activating a complex innate immune signaling pathway, which culminates in the activation of transcription factors and secretion of a family of functionally and genetically related cytokines. However, excessive immune activation may cause tissue damage and detrimental effects on the host. Therefore, in order to maintain host homeostasis, the innate immune response is tightly regulated during viral infection. We have reported SAMHD1 as a novel negative regulator of the innate immune response. Here, we provide new insights into SAMHD1-mediated negative regulation of the NF-κB pathway at the TRAF6-TAK1 checkpoint. We show that SAMHD1 inhibits TAK1 activation and TRAF6 signaling in response to proinflammatory stimuli. Interestingly, TRAF6 knockdown in SAMHD1-deficient cells significantly inhibited HIV-1 infection and activation of NF-κB induced by virus infection. Our research reveals a new negative regulatory mechanism by which SAMHD1 participates in the maintenance of cellular homeostasis during HIV-1 infection and inflammation.


Assuntos
Regulação da Expressão Gênica , Infecções por HIV/imunologia , Imunidade Inata/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/genética , NF-kappa B/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Transdução de Sinais
13.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408126

RESUMO

Unlike 2-dimensional (2D) images, direct 3-dimensional (3D) point cloud processing using deep neural network architectures is challenging, mainly due to the lack of explicit neighbor relationships. Many researchers attempt to remedy this by performing an additional voxelization preprocessing step. However, this adds additional computational overhead and introduces quantization error issues, limiting an accurate estimate of the underlying structure of objects that appear in the scene. To this end, in this article, we propose a deep network that can directly consume raw unstructured point clouds to perform object classification and part segmentation. In particular, a Deep Feature Transformation Network (DFT-Net) has been proposed, consisting of a cascading combination of edge convolutions and a feature transformation layer that captures the local geometric features by preserving neighborhood relationships among the points. The proposed network builds a graph in which the edges are dynamically and independently calculated on each layer. To achieve object classification and part segmentation, we ensure point order invariance while conducting network training simultaneously-the evaluation of the proposed network has been carried out on two standard benchmark datasets for object classification and part segmentation. The results were comparable to or better than existing state-of-the-art methodologies. The overall score obtained using the proposed DFT-Net is significantly improved compared to the state-of-the-art methods with the ModelNet40 dataset for object categorization.

14.
J Nurs Manag ; 30(7): 3083-3092, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35694872

RESUMO

AIMS: This study aimed to identify the job change status and related factors among nurses during the first 4 years of their professional life. BACKGROUND: The early turnover and job change of nurses results in negative patient and nurse outcomes and financial losses. METHODS: A prospective longitudinal observational design and convenience sampling were used. From five nursing schools in South Korea, 526 individuals participated in the first survey conducted before graduation; 317 and 338 individuals participated in the second and third surveys, respectively (4 months after employment, and 4 years after graduation). RESULTS: In total, 42.0% of the participants remained at the hospital of their first job, 26.6% switched hospitals, and 12.1% moved to a nonhospital job. Multinomial logistic regression analyses showed that switching hospitals was associated with nurses' grade point average, type of hospital, first job satisfaction, and current pay. Moving to a nonhospital job was related to gender, type of hospital, current pay, and work-life balance. CONCLUSION: To reduce the early turnover and job change, hospitals should provide educational programmes for nurses, support male nurses, and increase job satisfaction and work-life balance. IMPLICATIONS FOR NURSING MANAGEMENT: Since this study addresses the working conditions and satisfaction of individuals who were re-employed after experiencing job turnover, it clarifies how nurse managers may reduce turnover. Namely, nurse managers should establish a work environment promoting good work-life balance.


Assuntos
Enfermeiras e Enfermeiros , Recursos Humanos de Enfermagem Hospitalar , Masculino , Humanos , Seguimentos , Estudos Prospectivos , Reorganização de Recursos Humanos , Satisfação no Emprego , Local de Trabalho , Inquéritos e Questionários
15.
J Biol Chem ; 295(6): 1575-1586, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914403

RESUMO

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-ß, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-ß mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.


Assuntos
Imunidade Inata , Monócitos/imunologia , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Núcleo Celular/imunologia , Humanos , Infecções por Respirovirus/imunologia , Proteína 1 com Domínio SAM e Domínio HD/análise , Vírus Sendai/imunologia , Células THP-1 , Células U937
16.
J Am Chem Soc ; 143(28): 10751-10759, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232039

RESUMO

Mononuclear Pd(I) species are putative intermediates in Pd-catalyzed reactions, but our knowledge about them is limited due to difficulties in accessing them. Herein, we report the isolation of a Pd(I) amido complex, [(BINAP)Pd(NHArTrip)] (BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene, ArTrip = 2,6-bis(2',4',6'-triisopropylphenyl)phenyl), from the reaction of (BINAP)PdCl2 with LiNHArTrip. This Pd(I) amido species has been characterized by X-ray crystallography, electron paramagnetic resonance, and multiedge Pd X-ray absorption spectroscopy. Theoretical study revealed that, while the three-electron-two-center π-interaction between Pd and N in the Pd(I) complex imposes severe Pauli repulsion in its Pd-N bond, pronounced attractive interligand dispersion force aids its stabilization. In accord with its electronic features, reactions of homolytic Pd-N bond cleavage and deprotonation of primary amines are observed on the Pd(I) amido complex.


Assuntos
Amidas/química , Complexos de Coordenação/isolamento & purificação , Paládio/química , Complexos de Coordenação/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
17.
J Am Chem Soc ; 143(2): 925-933, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33410693

RESUMO

Electrocatalytic conversion of CO2 into value-added products offers a new paradigm for a sustainable carbon economy. For active CO2 electrolysis, the single-atom Ni catalyst has been proposed as promising from experiments, but an idealized Ni-N4 site shows an unfavorable energetics from theory, leading to many debates on the chemical nature responsible for high activity. To resolve this conundrum, here we investigated CO2 electrolysis of Ni sites with well-defined coordination, tetraphenylporphyrin (N4-TPP) and 21-oxatetraphenylporphyrin (N3O-TPP). Advanced spectroscopic and computational studies revealed that the broken ligand-field symmetry is the key for active CO2 electrolysis, which subordinates an increase in the Ni redox potential yielding NiI. Along with their importance in activity, ligand-field symmetry and strength are directly related to the stability of the Ni center. This suggests the next quest for an activity-stability map in the domain of ligand-field strength, toward a rational ligand-field engineering of single-atom Ni catalysts for efficient CO2 electrolysis.

18.
Inorg Chem ; 60(8): 5647-5659, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33788551

RESUMO

Square pyramidal cobalt complexes were prepared to study their multielectron redox properties. To build a stable redox-active cobalt complex, the combination of a tridentate acriPNP (acriPNP- = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide) ligand with a bidentate ligand, such as 2,2'-bipyridine, 2-(o-phenyl)pyridine, biphenylene, and their analogues, was employed. In a cobalt complex having a tetragonal structure, the dx2-y2 orbital possesses an antibonding character and must remain empty for its structural integrity, while the dz2 orbital acts as a redox-active frontier molecular orbital (FMO). Tuning the redox potential of the Co(II/I) couple was successfully achieved by introducing a different axial donor. The reduction of Co(II) to Co(I) occurs at -2.6 V for a neutral donor but shifts to -3.4 V for an anionic donor. Since the redox-active dz2 orbital is close in energy to other ligand-based orbitals, multielectron redox activity is also observed. Electrochemical measurements indicate three reversible redox events within a window of -3.0-0.0 V vs Fc/Fc+ in tetrahydrofuran (THF). These redox processes are fully reversible for over 100 cycles, reflecting the electrochemical stability of these cobalt complexes. Surprisingly, the oxidation potential of the acriPNP ligand varies dramatically from +0.15 to -2.4 V, which is probably due to the cobalt contribution on the amido-based molecular orbital. The electronic structure of the cobalt complexes was examined structurally, spectroscopically, and theoretically.

19.
Proc Natl Acad Sci U S A ; 115(16): E3798-E3807, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610295

RESUMO

Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.


Assuntos
Imunidade Inata , Inflamação/imunologia , Interferon-alfa/biossíntese , NF-kappa B/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/fisiologia , Viroses/imunologia , Animais , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células HEK293 , HIV/fisiologia , Humanos , Quinase I-kappa B/antagonistas & inibidores , Fator Regulador 7 de Interferon/antagonistas & inibidores , Interferon-alfa/genética , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/imunologia , Vírus Sendai/fisiologia , Transdução de Sinais/imunologia , Células THP-1
20.
Ren Fail ; 43(1): 168-179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33459127

RESUMO

The two primary mechanisms by which iodinated contrast media (CM) causes contrast-induced acute kidney injury (CIAKI) are the hemodynamic effect causing intrarenal vasoconstriction and the tubular toxic effect causing acute tubular necrosis. Inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which degrades prostaglandin E2 (PGE2), promotes tissue repair and regeneration in many organs. PGE2 causes intrarenal arterial vasodilation. In this study, we investigated whether a 15-PGDH inhibitor can act as a candidate for blocking these two major mechanisms of CIAKI. We established a CIAKI mouse model by injecting a 10 gram of iodine per body weight (gI/kg) dose of iodixanol into each mouse tail vein. A 15-PGDH inhibitor (SW033291), PGE1, or PGE2 were administered to compare the renal functional parameters, histologic injury, vasoconstriction, and renal blood flow changes. In addition, human renal proximal tubular epithelial cells were cultured in a CM-treated medium. SW033291, PGE1, or PGE2 were added to compare any changes in cell viability and apoptosis rate. CIAKI mice that received SW033291 had lower serum levels of creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1 (p < 0.001); lower histologic injury score and TUNEL positive rates (p < 0.001); and higher medullary arteriolar area (p < 0.05) and renal blood flow (p < 0.001) than CM + vehicle group. In cell culture experiments, Adding SW033291 increased the viability rate (p < 0.05) and decreased the apoptosis rate of the tubular epithelial cells (p < 0.001). This 15-PGDH inhibitor blocks the two primary mechanisms of CIAKI, intrarenal vasoconstriction and tubular cell toxicity, and thus has the potential to be a novel prophylaxis for CIAKI. Abbreviations: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase; AMP: adenosine monophosphate; CIAKI: contrast-induced acute kidney injury; CM: contrast media; EP: prostaglandin E2 receptor; hRPTECs: human-derived renal proximal tubule epithelial cells; KIM-1: kidney injury molecule-1; MTT: 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NGAL: neutrophil gelatinase-associated lipocalin; PBS: phosphate-buffered saline; PGE1: prostaglandin E1; PGE2: prostaglandin E2; RBF: renal blood flow; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; α-SMA: α-Smooth muscle actin.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Meios de Contraste/efeitos adversos , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Piridinas/farmacologia , Tiofenos/farmacologia , Animais , Creatinina/sangue , Feminino , Humanos , Rim/fisiopatologia , Lipocalina-2/sangue , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandinas E/farmacologia , Ácidos Tri-Iodobenzoicos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA