Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Protoc ; 6(6)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38133134

RESUMO

BACKGROUND: The aim of this study was to compare shoulder movement measurements between a Kinect-based markerless ROM assessment device (POM-Checker) and a 3D motion capture analysis system (BTS SMART DX-400). METHODS: This was a single-visit clinical trial designed to evaluate the validity and reliability of the POM-Checker. The primary outcome was to assess the equivalence between two measurement devices within the same set of participants, aiming to evaluate the validity of the POM-Checker compared to the gold standard device (3D Motion Analysis System). As this was a pilot study, six participants were included. RESULTS: The intraclass correlation coefficient (ICC) and the corresponding 95% confidence intervals (CIs) were used to assess the reproducibility of the measurements. Among the 18 movements analyzed, 16 exhibited ICC values of >0.75, indicating excellent reproducibility. CONCLUSION: The results showed that the POM-checker is reliable and validated to measure the range of motion of the shoulder joint.

2.
Sci Rep ; 10(1): 22252, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335244

RESUMO

The classification of Alzheimer's disease (AD) using deep learning methods has shown promising results, but successful application in clinical settings requires a combination of high accuracy, short processing time, and generalizability to various populations. In this study, we developed a convolutional neural network (CNN)-based AD classification algorithm using magnetic resonance imaging (MRI) scans from AD patients and age/gender-matched cognitively normal controls from two populations that differ in ethnicity and education level. These populations come from the Seoul National University Bundang Hospital (SNUBH) and Alzheimer's Disease Neuroimaging Initiative (ADNI). For each population, we trained CNNs on five subsets using coronal slices of T1-weighted images that cover the medial temporal lobe. We evaluated the models on validation subsets from both the same population (within-dataset validation) and other population (between-dataset validation). Our models achieved average areas under the curves of 0.91-0.94 for within-dataset validation and 0.88-0.89 for between-dataset validation. The mean processing time per person was 23-24 s. The within-dataset and between-dataset performances were comparable between the ADNI-derived and SNUBH-derived models. These results demonstrate the generalizability of our models to different patients with different ethnicities and education levels, as well as their potential for deployment as fast and accurate diagnostic support tools for AD.


Assuntos
Doença de Alzheimer/diagnóstico , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neuroimagem , Algoritmos , Biomarcadores , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA