Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11007-11018, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155746

RESUMO

Topography measurement is essential for surface characterization, semiconductor metrology, and inspection applications. To date, performing high-throughput and accurate topography remains challenging due to the trade-off between field-of-view (FOV) and spatial resolution. Here we demonstrate a novel topography technique based on the reflection-mode Fourier ptychographic microscopy, termed Fourier ptychograhpic topography (FPT). We show that FPT provides both a wide FOV and high resolution, and achieves nanoscale height reconstruction accuracy. Our FPT prototype is based on a custom-built computational microscope consisting of programmable brightfield and darkfield LED arrays. The topography reconstruction is performed by a sequential Gauss-Newton-based Fourier ptychographic phase retrieval algorithm augmented with total variation regularization. We achieve a synthetic numerical aperture (NA) of 0.84 and a diffraction-limited resolution of 750 nm, increasing the native objective NA (0.28) by 3×, across a 1.2 × 1.2 mm2 FOV. We experimentally demonstrate the FPT on a variety of reflective samples with different patterned structures. The reconstructed resolution is validated on both amplitude and phase resolution test features. The accuracy of the reconstructed surface profile is benchmarked against high-resolution optical profilometry measurements. In addition, we show that the FPT provides robust surface profile reconstructions even on complex patterns with fine features that cannot be reliably measured by the standard optical profilometer. The spatial and temporal noise of our FPT system is characterized to be 0.529 nm and 0.027 nm, respectively.

2.
Opt Express ; 30(26): 46956-46971, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558634

RESUMO

We present an innovative ellipsometry technique called self-interferometric pupil ellipsometry (SIPE), which integrates self-interference and pupil microscopy techniques to provide the high metrology sensitivity required for metrology applications of advanced semiconductor devices. Due to its unique configuration, rich angle-resolved ellipsometric information from a single-shot hologram can be extracted, where the full spectral information corresponding to incident angles from 0° to 70° with azimuthal angles from 0° to 360° is obtained, simultaneously. The performance and capability of the SIPE system were fully validated for various samples including thin-film layers, complicated 3D structures, and on-cell overlay samples on the actual semiconductor wafers. The results show that the proposed SIPE system can achieve metrology sensitivity up to 0.123 nm. In addition, it provides small spot metrology capability by minimizing the illumination spot diameter up to 1 µm, while the typical spot diameter of the industry standard ellipsometry is around 30 µm. As a result of collecting a huge amount of angular spectral data, undesirable multiple parameter correlation can be significantly reduced, making SIPE ideally suited for solving several critical metrology challenges we are currently facing.

3.
Sci Rep ; 14(1): 10519, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714707

RESUMO

The demand for high-resolution and large-area imaging systems for non-destructive wafer inspection has grown owing to the increasing complexity and extremely fine nature of semiconductor processes. Several studies have focused on developing high-resolution imaging systems; however, they were limited by the tradeoff between image resolution and field of view. Hence, computational imaging has arisen as an alternative method to conventional optical imaging, aimed at enhancing the aforementioned parameters. This study proposes a method for improving the resolution and field of view of an image in a lens-less reflection-type system. Our method was verified by computationally restoring the final image from diffraction images measured at various illumination positions using a visible light source. We introduced speckle illumination to expand the numerical aperture of the entire system, simultaneously improving image resolution and field of view. The image reconstruction process was accelerated by employing a convolutional neural network. Using the reconstructed phase images, we implemented high-resolution topography and demonstrated its applicability in wafer surface inspection. Furthermore, we demonstrated an ideal diffraction-limited spatial resolution of 1.7 µm over a field of view of 1.8 × 1.8 mm2 for the topographic imaging of targets with various surface roughness. The proposed approach is suitable for applications that simultaneously require high throughput and resolution, such as wafer-wide integrated metrology, owing to its compact design, cost-effectiveness, and mechanical robustness.

4.
Nano Lett ; 11(2): 729-33, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21194201

RESUMO

We have investigated the spectral broadening in the near-resonance fluorescence spectrum of a single rubidium atom trapped in a three-dimensional (3D) optical lattice in a strong Lamb-Dicke regime. Besides the strong Rayleigh peak, the spectrum exhibited weak Stokes and anti-Stokes Raman sidebands. The line width of the Rayleigh peak for low potential depths was well explained by matter-wave tunneling between the first-two lowest vibrational states of 3D anisotropic harmonic potentials of adjacent local minima of the optical lattice.


Assuntos
Semicondutores , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Opt Express ; 19(3): 2440-7, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369063

RESUMO

We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.


Assuntos
Lasers de Estado Sólido , Iluminação/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
6.
Opt Express ; 18(9): 9286-302, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588776

RESUMO

Atom-cavity coupling constant is a key parameter in cavity quantum electrodynamics for describing the interaction between an atom and a quantized electromagnetic field in a cavity. This paper reports a novel way to tune the coupling constant continuously by inducing an averaging of the atomic dipole moment over degenerate magnetic sublevels with elliptic polarization of the cavity field. We present an analytic solution of the stationary-state density matrix for this system with consideration of F -> F +1 hyperfine transition under a weak excitation condition. We rigorously show that the stationary-state emission spectra of this system can be approximated by that of a non-degenerate two-level atom with an effective coupling constant as a function of the elliptic angle of the cavity field only. A precise condition for this approximation is derived and its physical meaning is interpreted in terms of a population-averaged transition strength and its variance. Our results can be used to control the coupling constant in cavity quantum electrodynamics experiments with a degenerate two-level atom with magnetic sublevels. Possible applications of our results are discussed.

7.
Phys Rev Lett ; 104(15): 153601, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20481988

RESUMO

We report the first direct observation of an exceptional point (EP) in an open quantum composite of a single atom and a high-Q cavity mode. The atom-cavity coupling constant was made a continuous variable by utilizing the multisublevel nature of a single rubidium atom when it is optimally coupled to the cavity mode. The spectroscopic properties of quasieigenstates of the atom-cavity composite were experimentally investigated near the EP. Branch-point singularity of quasieigenenergies was observed and its 4pi symmetry was demonstrated. Consequently, the cavity transmission at the quasieigenstate was observed to exhibit a critical behavior at the EP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA