Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511402

RESUMO

The current production of the Japanese encephalitis virus (JEV) vaccine is based on animal cells, where various risk factors for human health should be resolved. This study used a transient expression system to express the chimeric protein composed of antigenic epitopes from the JEV envelope (E) protein in Nicotiana benthamiana. JEV multi-epitope peptide (MEP) sequences fused with FLAG-tag or 6× His-tag at the C- or N-terminus for the purification were introduced into plant expression vectors and used for transient expression. Among the constructs, vector pSK480, which expresses MEP fused with a FLAG-tag at the C-terminus, showed the highest level of expression and yield in purification. Optimization of transient expression procedures further improved the target protein yield. The purified MEP protein was applied to an ICR mouse and successfully induced an antibody against JEV, which demonstrates the potential of the plant-produced JEV MEP as an alternative vaccine candidate.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/prevenção & controle , Epitopos/genética , Nicotiana/genética , Anticorpos Antivirais , Camundongos Endogâmicos ICR , Peptídeos/genética , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/genética
2.
Anal Chem ; 94(25): 8958-8965, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35694825

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane-bound particles, including exosomes and microvesicles that differ in cellular origin, content, and lipid composition. This study reports that exosomes and microvesicles can be simultaneously separated by size using flow field-flow fractionation (FlFFF) employed with field programming and that the detection of low-concentration EV species can be significantly improved using multiangle light scattering (MALS). The efficiency of ultracentrifugation (UC) and ultrafiltration (UF) in isolating EVs from the culture media of DU145 cells was compared, and the results showed that UF retrieves more EVs than UC. Two size fractions (small and large) of both exosomes and microvesicles were collected during the FlFFF runs and examined using Western blotting to confirm each EV, and transmission electron microscopy was performed for size analysis. Sizes were compared using the root-mean-square radius obtained from the MALS calculation. The collected fractions were further examined using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the size-dependent lipidomic profiles of exosomes and microvesicles, showing that lipids were more enriched in the fraction containing large exosomes than in that containing small exosomes; however, an opposite trend was observed with microvesicles. The present study demonstrated that UF followed by FlFFF-MALS can be utilized for the size separation of exosomes and microvesicles without sequential centrifugation, which is useful for monitoring the changes in the size distribution of EVs depending on the biological status along with generating size-dependent lipidomic profiles.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Fracionamento por Campo e Fluxo , Exossomos/química , Fracionamento por Campo e Fluxo/métodos , Lipidômica , Ultracentrifugação
3.
J Mol Cell Cardiol ; 150: 12-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011158

RESUMO

Salt sensitivity of blood pressure (SSBP) is a trait carrying strong prognostic implications for various cardiovascular diseases. To test the hypothesis that excessive maternal salt intake causes SSBP in offspring through a mechanism dependent upon arginine-vasopressin (AVP), we performed a series of experiments using offspring of the rat dams salt-loaded during pregnancy and lactation with 1.5% saline drink ("experimental offspring") and those with normal perinatal salt exposure ("control offspring"). Salt challenge, given at 7-8 weeks of age with either 2% saline drink (3 days) or 8% NaCl-containing chow (4 weeks), had little or no effect on systolic blood pressure (SBP) in female offspring, whereas the salt challenge significantly raised SBP in male offspring, with the magnitude of increase being greater in experimental, than control, rats. Furthermore, the salt challenge not only raised plasma AVP level more and caused greater depressor responses to V1a and V2 AVP receptor antagonists to occur in experimental, than control, males, but it also made GABA excitatory in a significant proportion of magnocellular AVP neurons of experimental males by depolarizing GABA equilibrium potential. The effect of the maternal salt loading on the salt challenge-elicited SBP response in male offspring was precluded by maternal conivaptan treatment (non-selective AVP receptor antagonist) during the salt-loading period, whereas it was mimicked by neonatal AVP treatment. These results suggest that the excessive maternal salt intake brings about SSBP in male offspring, both the programming and the expression of which depend on increased AVP secretion that may partly result from excitatory GABAergic action.


Assuntos
Pressão Sanguínea , Efeitos Tardios da Exposição Pré-Natal/patologia , Cloreto de Sódio na Dieta/efeitos adversos , Vasopressinas/metabolismo , Animais , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Feminino , Lactação/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/líquido cefalorraquidiano , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Sódio/sangue , Sódio/líquido cefalorraquidiano , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/patologia , Sístole/efeitos dos fármacos , Vasopressinas/sangue , Ácido gama-Aminobutírico/metabolismo
4.
Nanotechnology ; 29(34): 345401, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29708505

RESUMO

Due to the poor chemical stability of CeO2-based materials, doped CeO2 electrolytes are generally used as a stabilized ZrO2 protection layer/doped CeO2 electrolyte bilayer structure. Since the ionic conductivity of stabilized ZrO2 materials is lower than that of doped CeO2 materials, the thickness of the ZrO2 protective layer needs to be optimized. Thus, in this study, nano-porous anodic aluminum oxide template based scandia stabilized zirconia (ScSZ)/gadolinia doped ceria (GDC) bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) are successfully fabricated and investigated. The optimized thickness of the ScSZ protection layer is revealed by physical and electrochemical characterizations to maximize the performance of LT-SOFCs. The 160 nm ScSZ/400 nm GDC bilayer electrolyte LT-SOFC achieves a maximum power density of 252 mW · cm-2 and an open circuit voltage of 1.02 V OCV at 450 °C.

5.
Korean J Physiol Pharmacol ; 22(2): 173-182, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29520170

RESUMO

Recent studies have provided several lines of evidence that peripheral administration of oxytocin induces analgesia in human and rodents. However, the exact underlying mechanism of analgesia still remains elusive. In the present study, we aimed to identify which receptor could mediate the analgesic effect of intraperitoneal injection of oxytocin and its cellular mechanisms in thermal pain behavior. We found that oxytocin-induced analgesia could be reversed by d(CH2)5[Tyr(Me)2,Dab5] AVP, a vasopressin-1a (V1a) receptor antagonist, but not by desGly-NH2-d(CH2)5[DTyr2, Thr4]OVT, an oxytocin receptor antagonist. Single cell RT-PCR analysis revealed that V1a receptor, compared to oxytocin, vasopressin-1b and vasopressin-2 receptors, was more profoundly expressed in dorsal root ganglion (DRG) neurons and the expression of V1a receptor was predominant in transient receptor potential vanilloid 1 (TRPV1)-expressing DRG neurons. Fura-2 based calcium imaging experiments showed that capsaicin-induced calcium transient was significantly inhibited by oxytocin and that such inhibition was reversed by V1a receptor antagonist. Additionally, whole cell patch clamp recording demonstrated that oxytocin significantly increased potassium conductance via V1a receptor in DRG neurons. Taken together, our findings suggest that analgesic effects produced by peripheral administration of oxytocin were attributable to the activation of V1a receptor, resulting in reduction of TRPV1 activity and enhancement of potassium conductance in DRG neurons.

6.
Nanotechnology ; 27(21): 215302, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27087196

RESUMO

Broadband optical antireflective arrays of sub-wavelength structures were fabricated on silicon substrates using colloidal nanosphere lithography in conjunction with reactive ion etching. The morphology of the nanostructures, including the shape, base diameter and height, was precisely controlled by modifying the conventional process of nanosphere lithography. We investigated their effects on the optical characteristics based on experimentally measured reflectance performance. The Si nanostructure arrays demonstrated optical antireflection performance with an average reflectance of about 1% across the spectral range from 300 to 800 nm, i.e. near-ultraviolet to visible wavelengths. This fabrication method can be used to create a large surface area and offers a promising approach for antireflective applications.

7.
Nanotechnology ; 27(41): 415402, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27595193

RESUMO

Yttria-stabilized zirconia (YSZ) thin film electrolyte deposited by plasma enhanced atomic layer deposition (PEALD) was investigated. PEALD YSZ-based bi-layered thin film electrolyte was employed for thin film solid oxide fuel cells on nanoporous anodic aluminum oxide substrates, whose electrochemical performance was compared to the cell with sputtered YSZ-based electrolyte. The cell with PEALD YSZ electrolyte showed higher open circuit voltage (OCV) of 1.0 V and peak power density of 182 mW cm(-2) at 450 °C compared to the one with sputtered YSZ electrolyte(0.88 V(OCV), 70 mW cm(-2)(peak power density)). High OCV and high power density of the cell with PEALD YSZ-based electrolyte is due to the reduction in ohmic and activation losses as well as the gas and electrical current tightness.

8.
Eur J Neurosci ; 42(7): 2467-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215659

RESUMO

Histamine, a neurotransmitter/neuromodulator implicated in the control of arousal state, exerts a potent phase-shifting effect on the circadian clock in the rodent suprachiasmatic nucleus (SCN). In this study, the mechanisms by which histamine resets the circadian clock in the mouse SCN were investigated. As a first step, Ca(2+) -imaging techniques were used to demonstrate that histamine increases intracellular Ca(2+) concentration ([Ca(2+) ]i ) in acutely dissociated SCN neurons and that this increase is blocked by the H1 histamine receptor (H1R) antagonist pyrilamine, the removal of extracellular Ca(2+) and the L-type Ca(2+) channel blocker nimodipine. The histamine-induced Ca(2+) transient is reduced, but not blocked, by application of the ryanodine receptor (RyR) blocker dantrolene. Immunohistochemical techniques indicated that CaV 1.3 L-type Ca(2+) channels are expressed mainly in the somata of SCN cells along with the H1R, whereas CaV 1.2 channels are located primarily in the processes. Finally, extracellular single-unit recordings demonstrated that the histamine-elicited phase delay of the circadian neural activity rhythm recorded from SCN slices is blocked by pyrilamine, nimodipine and the knockout of CaV 1.3 channel. Again, application of dantrolene reduced but did not block the histamine-induced phase delays. Collectively, these results indicate that, to reset the circadian clock, histamine increases [Ca(2+) ]i in SCN neurons by activating CaV 1.3 channels through H1R, and secondarily by causing Ca(2+) -induced Ca(2+) release from RyR-mediated internal stores.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Relógios Circadianos/fisiologia , Histamina/fisiologia , Receptores Histamínicos H1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Dantroleno/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nimodipina/farmacologia , Pirilamina/farmacologia , Transdução de Sinais
9.
Circ Res ; 113(12): 1296-307, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24103391

RESUMO

RATIONALE: Increased arginine-vasopressin (AVP) secretion is a key physiological response to hyperosmotic stress and may be part of the mechanism by which high-salt diets induce or exacerbate hypertension. OBJECTIVE: Using deoxycorticosterone acetate-salt hypertension model rats, we sought to test the hypothesis that changes in GABA(A) receptor-mediated inhibition in AVP-secreting magnocellular neurons contribute to the generation of Na(+)-dependent hypertension. METHODS AND RESULTS: In vitro gramicidin-perforated recordings in the paraventricular and supraoptic nuclei revealed that the GABAergic inhibition in AVP-secreting neurons was converted into excitation in this model, because of the depolarization of GABA equilibrium potential. Meanwhile, in vivo extracellular recordings in the supraoptic nuclei showed that the GABAergic baroreflexive inhibition of magnocellular neurons was transformed to excitation, so that baroreceptor activation may increase AVP release. The depolarizing GABA equilibrium potential shift in AVP-secreting neurons occurred progressively over weeks of deoxycorticosterone acetate-salt treatment along with gradual increases in plasma AVP and blood pressure. Furthermore, the shift was associated with changes in chloride transporter expression and partially reversed by bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor). Intracerebroventricular bumetanide administration during deoxycorticosterone acetate-salt treatment hindered the development of hypertension and rise in plasma AVP level. Muscimol (GABA(A) agonist) microinjection into the supraoptic nuclei in hypertensive rats increased blood pressure, which was prevented by previous intravenous V1a AVP antagonist injection. CONCLUSIONS: We conclude that the inhibitory-to-excitatory switch of GABAA receptor-mediated transmission in AVP neurons contributes to the generation of Na(+)-dependent hypertension by increasing AVP release. We speculate that normalizing the GABA equilibrium potential may have some utility in treating Na(+)-dependent hypertension.


Assuntos
Arginina Vasopressina/sangue , Hipertensão/sangue , Hipertensão/induzido quimicamente , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Cloreto de Sódio/toxicidade , Animais , Agonistas de Receptores de GABA-A/administração & dosagem , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem
10.
Nano Lett ; 13(9): 4551-5, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23977845

RESUMO

Obtaining high power density at low operating temperatures has been an ongoing challenge in solid oxide fuel cells (SOFC), which are efficient engines to generate electrical energy from fuels. Here we report successful demonstration of a thin-film three-dimensional (3-D) SOFC architecture achieving a peak power density of 1.3 W/cm(2) obtained at 450 °C. This is made possible by nanostructuring of the ultrathin (60 nm) electrolyte interposed with a nanogranular catalytic interlayer at the cathode/electrolyte interface. We attribute the superior cell performance to significant reduction in both the ohmic and the polarization losses due to the combined effects of employing an ultrathin film electrolyte, enhancement of effective area by 3-D architecture, and superior catalytic activity by the ceria-based interlayer at the cathode. These insights will help design high-efficiency SOFCs that operate at low temperatures with power densities that are of practical significance.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas/química , Óxidos/química , Catálise , Eletrodos , Eletrólitos/química
11.
J Chromatogr A ; 1724: 464927, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38677152

RESUMO

The thickness-tapered channel structure in flow field-flow fractionation (FlFFF), recently introduced by constructing a channel with a linear decrease in thickness along its length, demonstrated effectiveness in steric/hyperlayer separation of supramicron particles with improvements in separation speed, elution recovery, and an expanded dynamic size range of separation. In this study, we conducted a comparative analysis of the performance between the impact of field (or crossflow rate) programming or outflow rate programming for the separation of polystyrene latex standards (50 ∼ 800 nm) with a conventional channel having uniform thickness and a thickness-tapered channel without programming. Outlet flow rate and crossflow rate conditions were also varied. Although the particle size resolution of the tapered channel does not surpass that of field programming in uniform thickness channel, it achieves higher-speed separation without a significant loss of resolution and without the need for a complex flow controller system even at a low outflow rate condition. Furthermore, it yielded an improved resolution for particles close to the steric transition regime (400 ∼ 600 nm) in the normal mode of separation. Due to the continuous increase in mean flow velocity down the channel, the tapered channel exhibits flexibility in separating submicron-sized particles at high crossflow rate conditions or low outflow rate conditions, of which the latter can be advantageous when coupled with mass spectrometry in a miniaturized setup.


Assuntos
Fracionamento por Campo e Fluxo , Tamanho da Partícula , Poliestirenos , Fracionamento por Campo e Fluxo/métodos , Poliestirenos/química , Desenho de Equipamento
12.
ACS Nano ; 18(36): 25096-25106, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39189389

RESUMO

This study focused on addressing the challenges associated with the incompatibility between sulfide solid electrolytes and Ni-rich cathode active materials (CAMs) in all-solid-state lithium-ion batteries. To resolve these issues, protective layers have been explored for Ni-rich materials. Lithium lanthanum titanate (LLTO), a perovskite-type material, is recognized for its excellent chemical stability and ionic conductivity, which render it a potential protective layer in CAMs. However, traditional methods of achieving the perovskite structure involve temperatures exceeding 700 °C, resulting in challenges such as LLTO agglomeration, secondary phase formation between LLTO and CAM, and cation mixing within the CAM. In this study, a rapid technique known as flash-light sintering (FLS) was employed to fabricate a uniform and pure perovskite protective layer without inducing cation mixing within the CAM. The LLTO-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) with FLS treatment demonstrated minimal cation mixing and formed a fully covered dense layer. This resulted in a high initial capacity and effectively addressed the incompatibility issues between the sulfide electrolytes and CAM. The rapid FLS method not only streamlines the fabrication of LLTO-coated NCM811 but also provides opportunities for its broader application to materials that were previously deemed impractical because of high sintering temperatures.

13.
Phys Chem Chem Phys ; 15(20): 7520-5, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23579635

RESUMO

Because noble metal catalysts (e.g. Pt) are one of the main contributors to low-temperature (<500 °C) fuel cell costs, significant efforts have been made to lower the noble metal loading in constructing fuel cell electrodes. In this work, ultra-thin (∼10 nm) platinum (Pt) cathode/catalyst layers were patterned by atomic layer deposition (ALD) and tested as catalytic electrodes (cathode) for low-temperature solid oxide fuel cells. We found that 180 cycles or approximately 10 nm of ALD Pt, with a Pt loading of only 0.02 mg cm(-2), were sufficient for the purpose of a catalytic cathode. Furthermore, this ALD Pt resulted in fuel cell performance comparable to that achieved by 80 nm-thick sputtered Pt. Transmission electron microscope (TEM) observations revealed the optimized number of ALD cycles of Pt for the catalytic electrode, which renders both contiguity and high triple-phase boundary (TPB) density. This result suggests the ability to significantly reduce Pt loading, thereby reducing the cost, and furthermore, can be easily applied to high performance fuel cells with complex 3-D structures.

14.
J Nanosci Nanotechnol ; 13(12): 7895-901, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266160

RESUMO

In this work, the triple phase boundary (TPB) characteristics of the platinum (Pt)/yttria-stabilized zirconia (YSZ) interface in low-temperature solid oxide fuel cells (LT-SOFCs) was examined through the development of a novel nano electrode fabrication method utilizing nanosphere lithography and Langmuir-Blodgett methods. Dense Pt cathode structures with close-packed circular openings about 300 to 600 nm in diameter were successfully fabricated on 300 microm-thick single crystalline YSZ substrates, through which the underlying YSZ surface was exposed to the gas phase. Fuel cell current-voltage behavior and electrochemical impedance spectroscopy (EIS) measurements were carried out in the temperature range of 300-450 degrees C. The fuel cell performance, as evaluated by the peak power density, confirmed that the TPB is the actual electrochemical reaction site, as a proportional relationship was observed between the peak power density and an increase in the TPB density. In addition, electrochemical studies on the cathode interface resistance with different TPB geometries enabled a qualitative estimation of the electrochemically active region or the TPB width for the fuel cell charge transfer reaction. The fabrication and experiment methods employed in this work provide an opportunity to investigate electrode/electrolyte interface characteristics under real fuel cell operating conditions.

15.
Neurobiol Sleep Circadian Rhythms ; 14: 100089, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36874931

RESUMO

In mammals, photic information delivered to the suprachiasmatic nucleus (SCN) via the retinohypothalamic tract (RHT) plays a crucial role in synchronizing the master circadian clock located in the SCN to the solar cycle. It is well known that glutamate released from the RHT terminals initiates the synchronizing process by activating ionotropic glutamate receptors (iGluRs) on retinorecipient SCN neurons. The potential role of metabotropic glutamate receptors (mGluRs) in modulating this signaling pathway has received less attention. In this study, using extracellular single-unit recordings in mouse SCN slices, we investigated the possible roles of the Gq/11 protein-coupled mGluRs, mGluR1 and mGluR5, in photic resetting. We found that mGluR1 activation in the early night produced phase advances in neural activity rhythms in the SCN, while activation in the late night produced phase delays. In contrast, mGluR5 activation had no significant effect on the phase of these rhythms. Interestingly, mGluR1 activation antagonized phase shifts induced by glutamate through a mechanism that was dependent upon CaV1.3 L-type voltage-gated Ca2+ channels (VGCCs). While both mGluR1-evoked phase delays and advances were inhibited by knockout (KO) of CaV1.3 L-type VGCCs, different signaling pathways appeared to be involved in mediating these effects, with mGluR1 working via protein kinase G in the early night and via protein kinase A signaling in the late night. We conclude that, in the mouse SCN, mGluR1s function to negatively modulate glutamate-evoked phase shifts.

16.
J Neurosci ; 31(37): 13312-22, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917814

RESUMO

In mammals, the increased secretion of arginine-vasopressin (AVP) (antidiuretic hormone) and oxytocin (natriuretic hormone) is a key physiological response to hyperosmotic stress. In this study, we examined whether chronic hyperosmotic stress weakens GABA(A) receptor-mediated synaptic inhibition in rat hypothalamic magnocellular neurosecretory cells (MNCs) secreting these hormones. Gramicidin-perforated recordings of MNCs in acute hypothalamic slices prepared from control rats and ones subjected to the chronic hyperosmotic stress revealed that this challenge not only attenuated the GABAergic inhibition but actually converted it into excitation. The hyperosmotic stress caused a profound depolarizing shift in the reversal potential of GABAergic response (E(GABA)) in MNCs. This E(GABA) shift was associated with increased expression of Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) in MNCs and was blocked by the NKCC inhibitor bumetanide as well as by decreasing NKCC activity through a reduction of extracellular sodium. Blocking central oxytocin receptors during the hyperosmotic stress prevented the switch to GABAergic excitation. Finally, intravenous injection of the GABA(A) receptor antagonist bicuculline lowered the plasma levels of AVP and oxytocin in rats under the chronic hyperosmotic stress. We conclude that the GABAergic responses of MNCs switch between inhibition and excitation in response to physiological needs through the regulation of transmembrane Cl(-) gradients.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Pressão Osmótica/fisiologia , Estresse Fisiológico/fisiologia , Vasopressinas/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Bumetanida/farmacologia , Estimulação Elétrica/métodos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Ocitocina/sangue , Ocitocina/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/biossíntese , Membro 2 da Família 12 de Carreador de Soluto , Estresse Fisiológico/efeitos dos fármacos , Vasopressinas/sangue
17.
NMR Biomed ; 25(7): 943-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22246962

RESUMO

Fiber tracking in combination with functional MRI has recently attracted strong interest, as it may help to elucidate the structural basis for functional connectivities and may be selective in the determination of the fiber bundles responsible for a particular circuit. Diffusion spectrum imaging provides a more complex analysis of fiber circuits than the commonly used diffusion tensor imaging approach, also allowing the discrimination of crossing fibers in the brain. For the understanding of pathophysiological alterations during brain lesion and recovery, such studies need to be extended to small-animal models. In this article, we present the first study combining functional MRI with high-resolution diffusion spectrum imaging in vivo. We have chosen the well-characterized electrical forepaw stimulation paradigm in the rat to examine the thalamo-cortical pathway. Using the functionally activated areas in both thalamus and somatosensory cortex as seed and target regions for fiber tracking, we are able to characterize the fibers responsible for this stimulation pathway. Moreover, we show that the selection of the thalamic nucleus and primary somatosensory cortex on the basis of anatomical description results in a larger fiber bundle, probably encompassing connectivities between the thalamus and other areas of the somatosensory cortex, such as the hindpaw and large barrel field cortex.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/instrumentação , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Córtex Somatossensorial/anatomia & histologia , Tálamo/anatomia & histologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico , Difusão , Imagem de Tensor de Difusão/métodos , Estimulação Elétrica/métodos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Ratos , Ratos Wistar , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia
18.
Anal Chim Acta ; 1166: 338573, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34022993

RESUMO

Acidic lipids are associated with the regulation of the structure and function of membrane proteins. Therefore, accurate and highly precise analysis of acidic lipids is important for elucidating their biological roles and pathological mechanisms. In this study, an enhanced analytical method for the separation and quantification of acidic lipids, including phosphatidylserine (PS), phosphatidic acid (PA), cardiolipin, and their lyso-derivatives, was developed using nanoflow ultrahigh performance liquid chromatography-electrospray ionisation-tandem mass spectrometry. The separation and mass spectrometry detection of acidic lipids were optimised in terms of peak tailing and time-based separation efficiencies, with carbamate-embedded C18 as the stationary phase, in the presence of an appropriate liquid chromatography solvent modifier. This newly developed method was applied to analyse a lipid extract from porcine brain. A significant increase in the number of acidic lipids identified (176 vs. 134), including intact monolysocardiolipin (17 vs. 4), was observed with the new method compared with conventional C18. The quantification of acidic lipids was validated with plasma standard (NIST SRM 1950) spiked with a number of LPS and PS standards, and acceptable accuracy (<15%) was obtained. The present method was found to be reliable for the acidic lipid analysis based on qualitative results from tissue extract and plasma samples.


Assuntos
Plasma , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Massas , Solventes , Suínos
19.
Artigo em Inglês | MEDLINE | ID: mdl-33991954

RESUMO

Lipid analysis is a powerful tool that can elucidate the pathogenic roles of lipids in metabolic diseases, and facilitate the development of potential biomarkers. Lipid analysis by large-scale lipidomics requires a high-speed and high-throughput analytical platform. In the present study, a high-speed analytical method for lipid analysis using nanoflow ultrahigh-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry (nUHPLC-ESI-MS/MS) was optimised by investigating the effects of column flow rate, pump flow rate, dwell time, initial binary mobile phase composition, and gradient duration on the separation efficiency of standard lipid mixtures. The minimum gradient time for high-speed lipid separation was determined by examining the time-based separation efficiency and spectral overlap of isobaric lipid species during selected reaction monitoring-based quantification of sphingomyelin and a second isotope of phosphatidylcholine, which differ in molecular weight by only 1 Da. Finally, the optimised nUHPLC-ESI-MS/MS method was applied to analyse 200 plasma samples from patients with liver, gastric, lung, and colorectal cancer to evaluate its performance by measuring previously identified candidate lipid biomarkers. About 73% of the reported marker candidates (6 out of 7 in liver, 5/9 in gastric, 4/6 in lung, and 6/7 in colorectal cancer) could be assigned using the optimised method, supporting its use for high-throughput lipid analysis.


Assuntos
Lipídeos/sangue , Neoplasias/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
20.
Cardiovasc Res ; 117(10): 2263-2274, 2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32960965

RESUMO

AIMS: Abundant evidence indicates that oestrogen (E2) plays a protective role against hypertension. Yet, the mechanism underlying the antihypertensive effect of E2 is poorly understood. In this study, we sought to determine the mechanism through which E2 inhibits salt-dependent hypertension. METHODS AND RESULTS: To this end, we performed a series of in vivo and in vitro experiments employing a rat model of hypertension that is produced by deoxycorticosterone acetate (DOCA)-salt treatment after uninephrectomy. We found that E2 prevented DOCA-salt treatment from inducing hypertension, raising plasma arginine-vasopressin (AVP) level, enhancing the depressor effect of the V1a receptor antagonist (Phenylac1,D-Tyr(Et)2,Lys6,Arg8,des-Gly9)-vasopressin, and converting GABAergic inhibition to excitation in hypothalamic magnocellular AVP neurons. Moreover, we obtained results indicating that the E2 modulation of the activity and/or expression of NKCC1 (Cl- importer) and KCC2 (Cl- extruder) underpins the effect of E2 on the transition of GABAergic transmission in AVP neurons. Lastly, we discovered that, in DOCA-salt-treated hypertensive ovariectomized rats, CLP290 (prodrug of the KCC2 activator CLP257, intraperitoneal injections) lowered blood pressure, and plasma AVP level and hyperpolarized GABA equilibrium potential to prevent GABAergic excitation from emerging in the AVP neurons of these animals. CONCLUSION: Based on these results, we conclude that E2 inhibits salt-dependent hypertension by suppressing GABAergic excitation to decrease the hormonal output of AVP neurons.


Assuntos
Anti-Hipertensivos/farmacologia , Arginina Vasopressina/metabolismo , Núcleo Basal de Meynert/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Estradiol/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Hipertensão/prevenção & controle , Animais , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiopatologia , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Nefrectomia , Ovariectomia , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA