Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(7): 1870-1889, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36647630

RESUMO

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.


Assuntos
Ecossistema , Taiga , Carbono , Dióxido de Carbono , Tundra , Metano , Ciclo do Carbono
2.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36353841

RESUMO

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Assuntos
Sequestro de Carbono , Ecossistema , Solo , Dióxido de Carbono/análise , Tundra , Regiões Árticas , Ciclo do Carbono , Plantas , Carbono/análise
3.
Glob Chang Biol ; 28(16): 4794-4806, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452156

RESUMO

Earth's ecosystems are increasingly threatened by "hot drought," which occurs when hot air temperatures coincide with precipitation deficits, intensifying the hydrological, physiological, and ecological effects of drought by enhancing evaporative losses of soil moisture (SM) and increasing plant stress due to higher vapor pressure deficit (VPD). Drought-induced reductions in gross primary production (GPP) exert a major influence on the terrestrial carbon sink, but the extent to which hotter and atmospherically drier conditions will amplify the effects of precipitation deficits on Earth's carbon cycle remains largely unknown. During summer and autumn 2020, the U.S. Southwest experienced one of the most intense hot droughts on record, with record-low precipitation and record-high air temperature and VPD across the region. Here, we use this natural experiment to evaluate the effects of hot drought on GPP and further decompose those negative GPP anomalies into their constituent meteorological and hydrological drivers. We found a 122 Tg C (>25%) reduction in GPP below the 2015-2019 mean, by far the lowest regional GPP over the Soil Moisture Active Passive satellite record. Roughly half of the estimated GPP loss was attributable to low SM (likely a combination of record-low precipitation and warming-enhanced evaporative depletion), but record-breaking VPD amplified the reduction of GPP, contributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very likely to continue increasing over the next century, likely leading to more frequent and intense hot droughts and substantially enhancing drought-induced GPP reductions.


Assuntos
Secas , Ecossistema , Ciclo do Carbono , Temperatura Alta , Solo
4.
New Phytol ; 229(5): 2562-2575, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33118166

RESUMO

●Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (ΨL ). However, how iso/anisohydry changes over time in response to year-to-year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented by aridity index, affects the interannual variability of ecosystem iso/anisohydry at the regional scale, estimated using satellite microwave vegetation optical depth (VOD) observations. This ecosystem-level analysis was further complemented with published field observations of species-level ΨL . ●We found different behaviors in the directionality and sensitivity of isohydricity (σ) with respect to the interannual variation of dryness in different ecosystems. These behaviors can largely be differentiated by the average dryness of the ecosystem itself: in mesic ecosystems, σ decreases in drier years with a higher sensitivity to dryness; in xeric ecosystems, σ increases in drier years with a lower sensitivity to dryness. These results were supported by the species-level synthesis. ●Our study suggests that how plants adjust their water use across years - as revealed by their interannual variability in isohydricity - depends on the dryness of plants' living environment. This finding advances our understanding of plant responses to drought at regional scales.


Assuntos
Secas , Ecossistema , Folhas de Planta , Plantas , Água
5.
Glob Chang Biol ; 26(2): 682-696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596019

RESUMO

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.


Assuntos
Ecossistema , Fotossíntese , Alaska , Regiões Árticas , Canadá , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Estações do Ano
6.
Neurocrit Care ; 32(1): 198-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385182

RESUMO

BACKGROUND: Most data evaluating the relationship of post-mechanical thrombectomy (MT) blood pressure (BP) management and outcomes of patients with large vessel occlusion (LVO) focus on early BP control within the first 24 h. We investigated the correlation of daily BP trends up to the third day following MT with patient outcomes. METHODS: We retrospectively reviewed our prospectively maintained database for LVO patients treated with MT from February 2015 to December 2017. Recorded BP values for 72 h post-reperfusion were reviewed. Daily peak systolic and diastolic blood pressures (SBP, DBP) were extracted for each day post-procedure. The association and importance between BP increments of 10 mmHg and mortality, hemorrhage, and functional independence (FI = mRS ≤ 2) was analyzed in a multivariable logistic regression and random forest (RF) analyses modeling. RESULTS: A total of 212 thrombectomies were included. An increase in peak 24-h SBP was independently associated with higher likelihood of symptomatic hemorrhage (OR 1.2, p = 0.048) and decreased functional independence (OR 0.85, p = 0.03). Higher day 2 and day 3 peak SBP was strongly correlated with decreased functional independence and higher mortality. Third day SBP < 140 was independently associated with higher likelihood of functional independence (OR 4.3, p = 0.0004). Post-MT patients with and without functional independence demonstrated a similar relative decrease in peak SBP between the first 2 days following thrombectomy (p = 0.26); however, those without functional independence experienced a significant rebound increase in peak SBP on the third day following MT (mean change from day 2 to 3: FI - 3.5 mmHg, non-FI + 3.9 mmHg; p = 0.005). CONCLUSION: High daily maximum SBP and a rebound SBP on the third day following MT is independently associated with increased likelihood of functional dependence.


Assuntos
Hemorragia Cerebral/epidemiologia , Hipertensão/epidemiologia , Infarto da Artéria Cerebral Média/cirurgia , AVC Isquêmico/cirurgia , Complicações Pós-Operatórias/epidemiologia , Trombectomia , Idoso , Idoso de 80 Anos ou mais , Artéria Carótida Interna , Hemorragia Cerebral/fisiopatologia , Feminino , Fibrinolíticos/uso terapêutico , Humanos , Hipertensão/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/fisiopatologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Período Pós-Operatório , Prognóstico , Estudos Retrospectivos
7.
Pediatr Surg Int ; 36(2): 191-199, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31802191

RESUMO

INTRODUCTION: Repeated pediatric assault should be a never event. The purpose of this study was to evaluate the readmission and reinjury patterns in pediatric victims of assault including readmissions to different hospitals across the US. METHODS: The 2010-2014 Nationwide Readmissions Database was queried for all nonelective admissions for patients under the age of 18 years. Primary outcomes were readmission or reinjury within 1 year. Results were weighted for national estimates. RESULTS: Assault-related injury occurred in 46,294 pediatric patients with 11.4% of patients being readmitted within 1 year. Of those readmitted, 35.2% presented to a different hospital. Reinjury within 1 year occurred in about 1% of patients, with 14.8% of those presenting to a different hospital. Age < 13 years, firearm-injury, ISS > 15, female gender, and leaving AMA were found to be independent prognostic indicators of readmission within 1 year among pediatric assault patients. CONCLUSION: Care of children who are admitted and discharged for assault injuries is more fragmented that previously thought. Quality metrics fail to capture this previously hidden population. Our results identify treatable factors which could improve the care of children after assault.


Assuntos
Vítimas de Crime/estatística & dados numéricos , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Readmissão do Paciente/tendências , Ferimentos e Lesões/epidemiologia , Adolescente , Criança , Bases de Dados Factuais , Feminino , Humanos , Incidência , Masculino , Alta do Paciente/tendências , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia , Ferimentos e Lesões/terapia
8.
Proc Natl Acad Sci U S A ; 113(1): 40-5, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699476

RESUMO

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Assuntos
Temperatura Baixa , Metano/análise , Tundra , Regiões Árticas , Monitoramento Ambiental , Modelos Teóricos , Estações do Ano , Solo , Áreas Alagadas
9.
Remote Sens Environ ; 213: 1-17, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30050230

RESUMO

A method to assess global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand ) retrievals were derived using SMAP H-polarization brightness temperature (Tb ) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.85, p-value<0.001) with a 250-m resolution static global water map (MOD44W) aggregated at the same spatial scale, while capturing significant inundation variations worldwide. The monthly fwLBand averages also showed seasonal inundation changes consistent with river discharge records within six major US river basins. An uncertainty analysis indicated generally reliable fwLBand performance for major land cover areas and under low to moderate vegetation cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer resolution (30-m) fwLBand results were obtained for three sub-regions in North America using an empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived from the historical Landsat record. The resulting 30-m fwLBand retrievals showed favourable spatial accuracy for water (commission error 31.46%, omission error 30.20%) and land (commission error 0.87%, omission error 0.96%) classifications and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics and potential flood risk.

10.
Glob Chang Biol ; 23(5): 2090-2103, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27594213

RESUMO

Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr-1 , but also highlight regions of uncertainty where more observations are required or environmental controls are hard to constrain.


Assuntos
Ciclo do Carbono , Microbiologia do Solo , Solo , Temperatura , Carbono , Ecossistema , Processos Heterotróficos
11.
Mol Ecol ; 25(3): 689-705, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26677031

RESUMO

Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST ) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.


Assuntos
Adaptação Fisiológica/genética , Clima , Genética Populacional , Oncorhynchus mykiss/genética , Animais , Teorema de Bayes , Ecossistema , Variação Genética , Modelos Genéticos , Noroeste dos Estados Unidos , Polimorfismo de Nucleotídeo Único , Temperatura , Movimentos da Água
12.
Nature ; 467(7318): 951-4, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20935626

RESUMO

More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.


Assuntos
Atmosfera/química , Água Doce/análise , Aquecimento Global , Transpiração Vegetal/fisiologia , Ciclo Hidrológico , Inteligência Artificial , Aquecimento Global/estatística & dados numéricos , História do Século XX , História do Século XXI , Umidade , Reprodutibilidade dos Testes , Estações do Ano , Solo/análise , Incerteza , Volatilização
13.
Int J Biometeorol ; 58(6): 1305-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24005849

RESUMO

The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.


Assuntos
Sistemas de Informação Geográfica , Micro-Ondas , Desenvolvimento Vegetal , Imagens de Satélites , Biomassa , Estações do Ano , Água
14.
Glob Chang Biol ; 19(10): 3111-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23749682

RESUMO

The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land-atmosphere carbon exchange. Previous forest recovery assessments using satellite optical-infrared normalized difference vegetation index (NDVI) and tower CO(2) eddy covariance techniques indicate rapid vegetation recovery within 5-10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post-fire vegetation response to inform regional recovery assessments. We analyzed a multi-year (2003-2010) satellite VOD record from the NASA AMSR-E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post-fire canopy biomass recovery within 3-7 years, lagging NDVI recovery by 1-5 years. The VOD lag was attributed to slower non-photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre-burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical-infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.


Assuntos
Biomassa , Incêndios , Árvores/crescimento & desenvolvimento , Alaska , Micro-Ondas , Tecnologia de Sensoriamento Remoto , Comunicações Via Satélite , Yukon
15.
Front Big Data ; 6: 1243559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045095

RESUMO

Satellite microwave sensors are well suited for monitoring landscape freeze-thaw (FT) transitions owing to the strong brightness temperature (TB) or backscatter response to changes in liquid water abundance between predominantly frozen and thawed conditions. The FT retrieval is also a sensitive climate indicator with strong biophysical importance. However, retrieval algorithms can have difficulty distinguishing the FT status of soils from that of overlying features such as snow and vegetation, while variable land conditions can also degrade performance. Here, we applied a deep learning model using a multilayer convolutional neural network driven by AMSR2 and SMAP TB records, and trained on surface (~0-5 cm depth) soil temperature FT observations. Soil FT states were classified for the local morning (6 a.m.) and evening (6 p.m.) conditions corresponding to SMAP descending and ascending orbital overpasses, mapped to a 9 km polar grid spanning a five-year (2016-2020) record and Northern Hemisphere domain. Continuous variable estimates of the probability of frozen or thawed conditions were derived using a model cost function optimized against FT observational training data. Model results derived using combined multi-frequency (1.4, 18.7, 36.5 GHz) TBs produced the highest soil FT accuracy over other models derived using only single sensor or single frequency TB inputs. Moreover, SMAP L-band (1.4 GHz) TBs provided enhanced soil FT information and performance gain over model results derived using only AMSR2 TB inputs. The resulting soil FT classification showed favorable and consistent performance against soil FT observations from ERA5 reanalysis (mean percent accuracy, MPA: 92.7%) and in situ weather stations (MPA: 91.0%). The soil FT accuracy was generally consistent between morning and afternoon predictions and across different land covers and seasons. The model also showed better FT accuracy than ERA5 against regional weather station measurements (91.0% vs. 86.1% MPA). However, model confidence was lower in complex terrain where FT spatial heterogeneity was likely beneath the effective model grain size. Our results provide a high level of precision in mapping soil FT dynamics to improve understanding of complex seasonal transitions and their influence on ecological processes and climate feedbacks, with the potential to inform Earth system model predictions.

16.
Remote Sens Environ ; 125: 147-156, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23049143

RESUMO

Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems.

17.
Sci Total Environ ; 820: 153316, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35066030

RESUMO

Eutrophication is a severe environmental pollution problem for inland waters and poses significant threats to the water safety. Monitoring trophic state of inland waters using optical remote sensing generally requires the inversion of water quality parameters, such as chlorophyll-a, secchi depth, etc. However, the accurate inversion of these individual indicators remains challenging, while the associated retrieval errors can propagate and degrade the evaluation of trophic state. Hence, we proposed a novel monitoring method by developing a Trophic State Index (TSI) based on optical remote-sensing parameters, i.e., Forel-Ule index (FUI) and non-water absorption coefficient at 674 nm (referred to as at-w(674)) retrieved from Sentinel-3 Ocean and Land Color Instrument (OLCI) imagery. The estimated TSI showed favorable correspondence with observed water quality data, including coefficient of determination (r2 = 0.91), root mean squared error (RMSE = 5.54), and mean absolute percentage error (MAPE = 10.69%). Using the Sentinel-3 OLCI data, the proposed method also had very good performance in the field spectrum (MAPE = 5.25 % , RMSE = 3.36). The monthly trophic state evaluation also showed congruence (MAPE = 12.51 % , RMSE = 6.41) with surface water quality monthly report (SWQMR) from the Ministry of Environment and Ecology of the People's Republic of China. The monthly TSI showed favorable agreement for 23 ungauged lakes (RMSE = 7.26, MAPE = 12.78%), indicating potential utility for regional lake water quality monitoring. The proposed method was then applied to 47 other large (>50 km2) water bodies in the Middle-and-Lower watershed of Yangtze River and the Huaihe watershed to evaluate the spatial and temporal variation of trophic state from 2016 to 2020. The TSI results revealed several lakes, such as Lake Honghu and Lake Luoma, with rapidly deteriorating water quality during the study period, while other lakes show relative improvement (e.g., Xiashan Reservoir), indicating unbalanced environmental pressure over the region. Overall, this study showed promising performance and potential for satellite-based monitoring of regional aquatic environments.


Assuntos
Monitoramento Ambiental , Eutrofização , Monitoramento Ambiental/métodos , Lagos , Rios , Qualidade da Água
18.
Nat Commun ; 13(1): 5626, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163194

RESUMO

Warming of northern high latitude regions (NHL, > 50 °N) has increased both photosynthesis and respiration which results in considerable uncertainty regarding the net carbon dioxide (CO2) balance of NHL ecosystems. Using estimates constrained from atmospheric observations from 1980 to 2017, we find that the increasing trends of net CO2 uptake in the early-growing season are of similar magnitude across the tree cover gradient in the NHL. However, the trend of respiratory CO2 loss during late-growing season increases significantly with increasing tree cover, offsetting a larger fraction of photosynthetic CO2 uptake, and thus resulting in a slower rate of increasing annual net CO2 uptake in areas with higher tree cover, especially in central and southern boreal forest regions. The magnitude of this seasonal compensation effect explains the difference in net CO2 uptake trends along the NHL vegetation- permafrost gradient. Such seasonal compensation dynamics are not captured by dynamic global vegetation models, which simulate weaker respiration control on carbon exchange during the late-growing season, and thus calls into question projections of increasing net CO2 uptake as high latitude ecosystems respond to warming climate conditions.


Assuntos
Dióxido de Carbono , Pergelissolo , Ciclo do Carbono , Ecossistema , Estações do Ano
19.
Biol Rev Camb Philos Soc ; 97(4): 1712-1735, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451197

RESUMO

Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and management, innovation has far outpaced implementation and coordination. Technological and methodological syntheses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics, and others, and present a generalized framework for distilling existing and emerging data into products for proactive IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.


Assuntos
Biodiversidade , Espécies Introduzidas
20.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314726

RESUMO

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Assuntos
Sequestro de Carbono , Ecossistema , Regiões Árticas , Dióxido de Carbono , Mudança Climática , Plantas , Estações do Ano , Solo , Tundra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA