Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 72(1): 161-178, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130303

RESUMO

Some phylogenetic problems remain unresolved even when large amounts of sequence data are analyzed and methods that accommodate processes such as incomplete lineage sorting are employed. In addition to investigating biological sources of phylogenetic incongruence, it is also important to reduce noise in the phylogenomic dataset by using appropriate filtering approach that addresses gene tree estimation errors. We present the results of a case study in manakins, focusing on the very difficult clade comprising the genera Antilophia and Chiroxiphia. Previous studies suggest that Antilophia is nested within Chiroxiphia, though relationships among Antilophia+Chiroxiphia species have been highly unstable. We extracted more than 11,000 loci (ultra-conserved elements and introns) from whole genomes and conducted analyses using concatenation and multispecies coalescent methods. Topologies resulting from analyses using all loci differed depending on the data type and analytical method, with 2 clades (Antilophia+Chiroxiphia and Manacus+Pipra+Machaeopterus) in the manakin tree showing incongruent results. We hypothesized that gene trees that conflicted with a long coalescent branch (e.g., the branch uniting Antilophia+Chiroxiphia) might be enriched for cases of gene tree estimation error, so we conducted analyses that either constrained those gene trees to include monophyly of Antilophia+Chiroxiphia or excluded these loci. While constraining trees reduced some incongruence, excluding the trees led to completely congruent species trees, regardless of the data type or model of sequence evolution used. We found that a suite of gene metrics (most importantly the number of informative sites and likelihood of intralocus recombination) collectively explained the loci that resulted in non-monophyly of Antilophia+Chiroxiphia. We also found evidence for introgression that may have contributed to the discordant topologies we observe in Antilophia+Chiroxiphia and led to deviations from expectations given the multispecies coalescent model. Our study highlights the importance of identifying factors that can obscure phylogenetic signal when dealing with recalcitrant phylogenetic problems, such as gene tree estimation error, incomplete lineage sorting, and reticulation events. [Birds; c-gene; data type; gene estimation error; model fit; multispecies coalescent; phylogenomics; reticulation].


Assuntos
Passeriformes , Animais , Filogenia , Íntrons , Probabilidade
2.
Mol Phylogenet Evol ; 178: 107646, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265831

RESUMO

The Old World flycatchers, robins and chats (Aves, Muscicapidae) are a diverse songbird family with over three hundred species. Despite continuous efforts over the past two decades, there is still no comprehensive and well-resolved species-level phylogeny for Muscicapidae. Here we present a supermatrix phylogeny that includes all 50 currently recognized genera and ca. 92% of all the species, built using data from up to 15 mitochondrial and 13 nuclear loci. In addition to assembling nucleotide sequences available in public databases, we also extracted sequences from the genome assemblies and raw sequencing reads from GenBank and included a few unpublished sequences. Our analyses resolved the phylogenetic position for several previously unsampled taxa, for example, the Grand Comoro Flycatcher Humblotia flavirostris, the Collared Palm Thrush Cichladusa arquata, and the Taiwan Whistling-Thrush Myophonus insularis, etc. We also provide taxonomic recommendations for genera that exhibit paraphyly or polyphyly. Our results suggest that Muscicapidae diverged from Turdidae (thrushes and allies) in the early Miocene, and the most recent common ancestors for the four subfamilies (Muscicapinae, Niltavinae, Cossyphinae and Saxicolinae) all arose around the middle Miocene.


Assuntos
Gadiformes , Passeriformes , Aves Canoras , Animais , Aves Canoras/genética , Filogenia , Passeriformes/genética , Gadiformes/genética , Núcleo Celular/genética , DNA Mitocondrial/genética
3.
Horm Behav ; 151: 105340, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933440

RESUMO

Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.


Assuntos
Passeriformes , Biologia de Sistemas , Humanos , Animais , Sistema Endócrino , Passeriformes/fisiologia , Hormônios , Adaptação Fisiológica
4.
J Hered ; 114(1): 1-13, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36808491

RESUMO

Despite the increasing feasibility of sequencing whole genomes from diverse taxa, a persistent problem in phylogenomics is the selection of appropriate genetic markers or loci for a given taxonomic group or research question. In this review, we aim to streamline the decision-making process when selecting specific markers to use in phylogenomic studies by introducing commonly used types of genomic markers, their evolutionary characteristics, and their associated uses in phylogenomics. Specifically, we review the utilities of ultraconserved elements (including flanking regions), anchored hybrid enrichment loci, conserved nonexonic elements, untranslated regions, introns, exons, mitochondrial DNA, single nucleotide polymorphisms, and anonymous regions (nonspecific regions that are evenly or randomly distributed across the genome). These various genomic elements and regions differ in their substitution rates, likelihood of neutrality or of being strongly linked to loci under selection, and mode of inheritance, each of which are important considerations in phylogenomic reconstruction. These features may give each type of marker important advantages and disadvantages depending on the biological question, number of taxa sampled, evolutionary timescale, cost effectiveness, and analytical methods used. We provide a concise outline as a resource to efficiently consider key aspects of each type of genetic marker. There are many factors to consider when designing phylogenomic studies, and this review may serve as a primer when weighing options between multiple potential phylogenomic markers.


Assuntos
Genoma , Genômica , Animais , Filogenia , Genômica/métodos , Evolução Biológica , Vertebrados/genética
5.
Proc Biol Sci ; 289(1974): 20212540, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506220

RESUMO

Body size mediates life history, physiology and inter- and intra-specific interactions. Within species, sexes frequently differ in size, reflecting divergent selective pressures and/or constraints. Both sexual selection and differences in environmentally mediated reproductive constraints can drive sexual size dimorphism, but empirically testing causes of dimorphism is challenging. Manakins (Pipridae), a family of Neotropical birds comprising approximately 50 species, exhibit a broad range of size dimorphism from male- to female-biased and are distributed across gradients of precipitation and elevation. Males perform courtship displays ranging from simple hops to complex aerobatic manoeuvres. We tested associations between sexual size dimorphism and (a) agility and (b) environment, analysing morphological, behavioural and environmental data for 22 manakin species in a phylogenetic framework. Sexual dimorphism in mass was most strongly related to agility, with males being lighter than females in species performing more aerial display behaviours. However, wing and tarsus length dimorphism were more strongly associated with environmental variables, suggesting that different sources of selection act on different aspects of body size. These results highlight the strength of sexual selection in shaping morphology-even atypical patterns of dimorphism-while demonstrating the importance of constraints and ecological consequences of body size evolution.


Assuntos
Dança , Passeriformes , Animais , Tamanho Corporal , Feminino , Masculino , Filogenia , Caracteres Sexuais
6.
Mol Phylogenet Evol ; 175: 107559, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803448

RESUMO

As phylogenomics focuses on comprehensive taxon sampling at the species and population/subspecies levels, incorporating genomic data from historical specimens has become increasingly common. While historical samples can fill critical gaps in our understanding of the evolutionary history of diverse groups, they also introduce additional sources of phylogenomic uncertainty, making it difficult to discern novel evolutionary relationships from artifacts caused by sample quality issues. These problems highlight the need for improved strategies to disentangle artifactual patterns from true biological signal as historical specimens become more prevalent in phylogenomic datasets. Here, we tested the limits of historical specimen-driven phylogenomics to resolve subspecies-level relationships within a highly polytypic family, the New World quails (Odontophoridae), using thousands of ultraconserved elements (UCEs). We found that relationships at and above the species-level were well-resolved and highly supported across all analyses, with the exception of discordant relationships within the two most polytypic genera which included many historical specimens. We examined the causes of discordance and found that inferring phylogenies from subsets of taxa resolved the disagreements, suggesting that analyzing subclades can help remove artifactual causes of discordance in datasets that include historical samples. At the subspecies-level, we found well-resolved geographic structure within the two most polytypic genera, including the most polytypic species in this family, Northern Bobwhites (Colinus virginianus), demonstrating that variable sites within UCEs are capable of resolving phylogenetic structure below the species level. Our results highlight the importance of complete taxonomic sampling for resolving relationships among polytypic species, often through the inclusion of historical specimens, and we propose an integrative strategy for understanding and addressing the uncertainty that historical samples sometimes introduce to phylogenetic analyses.


Assuntos
Genoma , Genômica , Animais , Evolução Biológica , Genômica/métodos , Filogenia , Codorniz
7.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936315

RESUMO

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Assuntos
Passeriformes , Animais , Austrália , Biodiversidade , Evolução Biológica , Fósseis , Nova Zelândia , Passeriformes/classificação , Passeriformes/genética , Passeriformes/fisiologia , Filogenia
8.
Mol Phylogenet Evol ; 158: 107091, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545275

RESUMO

Building taxon-rich phylogenies is foundational for macroevolutionary studies. One approach to improve taxon sampling beyond individual studies is to build supermatricies of publicly available data, incorporating taxa sampled across different studies and utilizing different loci. Most existing supermatrix studies have focused on loci commonly sequenced with Sanger technology ("legacy" markers, such as mitochondrial data and small numbers of nuclear loci). However, incorporating phylogenomic studies into supermatrices allows problem nodes to be targeted and resolved with considerable amounts of data, while improving taxon sampling with legacy data. Here we estimate phylogeny from a galliform supermatrix which includes well-known model and agricultural species such as the chicken and turkey. We assembled a supermatrix comprising 4500 ultra-conserved elements (UCEs) collected as part of recent phylogenomic studies in this group and legacy mitochondrial and nuclear (intron and exon) sequences. Our resulting phylogeny included 88% of extant species and recovered well-accepted relationships with strong support. However, branch lengths, which are particularly important in down-stream macroevolutionary studies, appeared vastly skewed. Taxa represented only by rapidly evolving mitochondrial data had high proportions of missing data and exhibited long terminal branches. Conversely, taxa sampled for slowly evolving UCEs with low proportions of missing data exhibited substantially shorter terminal branches. We explored several branch length re-estimation methods with particular attention to terminal branches and conclude that re-estimation using well-sampled mitochondrial sequences may be a pragmatic approach to obtain trees suitable for macroevolutionary analysis.


Assuntos
Galliformes/classificação , Animais , Núcleo Celular/genética , Bases de Dados Genéticas , Galliformes/genética , Galliformes/fisiologia , Íntrons , Mitocôndrias/genética , Filogenia
9.
Mol Phylogenet Evol ; 155: 107013, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217578

RESUMO

Target capture sequencing effectively generates molecular marker arrays useful for molecular systematics. These extensive data sets are advantageous where previous studies using a few loci have failed to resolve relationships confidently. Moreover, target capture is well-suited to fragmented source DNA, allowing data collection from species that lack fresh tissues. Herein we use target capture to generate data for a phylogeny of the avian family Pipridae (manakins), a group that has been the subject of many behavioral and ecological studies. Most manakin species feature lek mating systems, where males exhibit complex behavioral displays including mechanical and vocal sounds, coordinated movements of multiple males, and high speed movements. We analyzed thousands of ultraconserved element (UCE) loci along with a smaller number of coding exons and their flanking regions from all but one species of Pipridae. We examined three different methods of phylogenetic estimation (concatenation and two multispecies coalescent methods). Phylogenetic inferences using UCE data yielded strongly supported estimates of phylogeny regardless of analytical method. Exon probes had limited capability to capture sequence data and resulted in phylogeny estimates with reduced support and modest topological differences relative to the UCE trees, although these conflicts had limited support. Two genera were paraphyletic among all analyses and data sets, with Antilophia nested within Chiroxiphia and Tyranneutes nested within Neopelma. The Chiroxiphia-Antilophia clade was an exception to the generally high support we observed; the topology of this clade differed among analyses, even those based on UCE data. To further explore relationships within this group, we employed two filtering strategies to remove low-information loci. Those analyses resulted in distinct topologies, suggesting that the relationships we identified within Chiroxiphia-Antilophia should be interpreted with caution. Despite the existence of a few continuing uncertainties, our analyses resulted in a robust phylogenetic hypothesis of the family Pipridae that provides a comparative framework for future ecomorphological and behavioral studies.


Assuntos
Loci Gênicos , Passeriformes/classificação , Passeriformes/genética , Filogenia , Animais , Sequência de Bases , Éxons/genética , Funções Verossimilhança , Especificidade da Espécie
10.
Mol Biol Evol ; 35(8): 2060-2064, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860531

RESUMO

Mitochondrial DNA sequences are frequently transferred into the nuclear genome, giving rise to numts (nuclear mitochondrial DNA segments). In the absence of whole genomes, avian numts have been suggested to be rare and relatively short. We examined 64 bird genomes to test hypotheses regarding numt frequency, distribution among taxa, and likelihood of homoplasy. We discovered 100-fold variation in numt number across species. Two songbirds, Geospiza fortis (Darwin's finch) and Zonotrichia albicollis (white-throated sparrow) had the largest number of numts. Ancestral state reconstruction of 957 numt insertions in these two species and their close relatives indicated a remarkable acceleration of numt insertion in the ancestor of Geospiza and Zonotrichia followed by slower, continued accumulation in each lineage. These numts appear to result primarily from de novo insertion with the duplication of existing numts representing a secondary pathway. Insertion events were essentially homoplasy-free and numts appear to represent perfect rare genomic changes.


Assuntos
Aves/genética , DNA Mitocondrial/genética , Genoma , Mutagênese Insercional , Animais , Evolução Molecular , Genômica
11.
Mol Phylogenet Evol ; 130: 132-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321694

RESUMO

Conflicts between nuclear and mitochondrial phylogenies have led to uncertainty for some relationships within the tree of life. These conflicts have led some to question the value of mitochondrial DNA in phylogenetics now that genome-scale nuclear data can be readily obtained. However, since mitochondrial DNA is maternally inherited and does not recombine, its phylogeny should be closer to the species tree. Additionally, its rapid evolutionary rate may drive accumulation of mutations along short internodes where relevant information from nuclear loci may be limited. In this study, we examine the mitochondrial phylogeny of Cavitaves to elucidate its congruence with recently published nuclear phylogenies of this group of birds. Cavitaves includes the orders Trogoniformes (trogons), Bucerotiformes (hornbills), Coraciiformes (kingfishers and allies), and Piciformes (woodpeckers and allies). We hypothesized that sparse taxon sampling in previously published mitochondrial trees was responsible for apparent cyto-nuclear discordance. To test this hypothesis, we assembled 27 additional Cavitaves mitogenomes and estimated phylogenies using seven different taxon sampling schemes ranging from five to 42 ingroup species. We also tested the role that partitioning and model choice played in the observed discordance. Our analyses demonstrated that improved taxon sampling could resolve many of the disagreements. Similarly, partitioning was valuable in improving congruence with the topology from nuclear phylogenies, though the model used to generate the mitochondrial phylogenies had less influence. Overall, our results suggest that the mitochondrial tree is trustworthy when partitioning is used with suitable taxon sampling.


Assuntos
Aves/classificação , Aves/genética , Genoma Mitocondrial/genética , Modelos Teóricos , Filogenia , Animais , Evolução Biológica , Núcleo Celular , Evolução Molecular , Genoma/genética , Análise de Sequência de DNA
12.
Mol Phylogenet Evol ; 130: 297-303, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359745

RESUMO

Target enrichment of conserved genomic regions facilitates collecting sequences of many orthologous loci from non-model organisms to address phylogenetic, phylogeographic, population genetic, and molecular evolution questions. Bait sets for sequence capture can simultaneously target thousands of loci, which opens new avenues of research on speciose groups. Current phylogenetic hypotheses on the >103,000 species of Hemiptera have failed to unambiguously resolve major nodes, suggesting that alternative datasets and more thorough taxon sampling may be required to resolve relationships. We use a recently designed ultraconserved element (UCE) bait set for Hemiptera, with a focus on the suborder Heteroptera, or the true bugs, to test previously proposed relationships. We present newly generated UCE data for 36 samples representing three suborders, all seven heteropteran infraorders, 23 families, and 34 genera of Hemiptera and one thysanopteran outgroup. To improve taxon sampling, we also mined additional UCE loci in silico from published hemipteran genomic and transcriptomic data. We obtained 2271 UCE loci for newly sequenced hemipteran taxa, ranging from 265 to 1696 (average 904) per sample. These were similar in number to the data mined from transcriptomes and genomes, but with fewer loci overall. The amount of missing data correlates with greater phylogenetic divergence from taxa used to design the baits. This bait set hybridizes to a wide range of hemipteran taxa and specimens of varying quality, including dried specimens as old as 1973. Our estimated phylogeny yielded topologies consistent with other studies for most nodes and was strongly-supported. We also demonstrate that UCE loci are almost exclusively from the transcribed portion of the genome, thus data can be successfully integrated with existing genomic and transcriptomic resources for more comprehensive phylogenetic sampling, an important feature in the era of phylogenomics. UCE approaches can be used by other researchers for additional studies on hemipteran evolution and other research that requires well resolved phylogenies.


Assuntos
Sequência Conservada/genética , Genômica/métodos , Hemípteros/classificação , Hemípteros/genética , Filogenia , Animais , Loci Gênicos , Funções Verossimilhança , Análise de Sequência de DNA , Transcriptoma/genética
13.
Mol Phylogenet Evol ; 129: 304-314, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201427

RESUMO

Next-generation DNA sequencing (NGS) offers a promising way to obtain massive numbers of orthologous loci to understand phylogenetic relationships among organisms. Of particular interest are old museum specimens and other samples with degraded DNA, where traditional sequencing methods have proven to be challenging. Low coverage shotgun sequencing and sequence capture are two widely used NGS approaches for degraded DNA. Sequence capture can yield sequence data for large numbers of orthologous loci, but it can only be used to sequence genomic regions near conserved sequences that can be used as probes. Low coverage shotgun sequencing has the potential to yield different data types throughout the genome. However, many studies using this method have often generated mitochondrial sequences, and few nuclear sequences, suggesting orthologous nuclear sequences are likely harder to recover. To determine the phylogenetic position of the galliform genus Tropicoperdix, whose phylogenetic position is currently uncertain, we explored two strategies to maximize data extraction from low coverage shotgun sequencing from approximately 100-year-old museum specimens from two species of Tropicoperdix. One approach, a simple read mapping strategy, outperformed the other (a reduced complexity assembly approach), and allowed us to obtain a large number of ultraconserved element (UCE) loci, relatively conserved exons, more variable introns, as well as mitochondrial genomes. Additionally, we demonstrated some simple approaches to explore possible artifacts that may result from the use of degraded DNA. Our data placed Tropicoperdix within a clade that includes many taxa characterized with ornamental eyespots (peafowl, argus pheasants, and peacock pheasants), and established relationships among species within the genus. Therefore, our study demonstrated that low coverage shotgun sequencing can easily be leveraged to yield substantial amounts and varying types of data, which opens the door for many research questions that might require information from different data types from museum specimens.


Assuntos
Sequência Conservada/genética , Éxons/genética , Galliformes/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Íntrons/genética , Museus , Animais , Núcleo Celular/genética , DNA/genética , Loci Gênicos , Genoma Mitocondrial , Funções Verossimilhança , Filogenia , Especificidade da Espécie
14.
Syst Biol ; 66(5): 857-879, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369655

RESUMO

Phylogenomics, the use of large-scale data matrices in phylogenetic analyses, has been viewed as the ultimate solution to the problem of resolving difficult nodes in the tree of life. However, it has become clear that analyses of these large genomic data sets can also result in conflicting estimates of phylogeny. Here, we use the early divergences in Neoaves, the largest clade of extant birds, as a "model system" to understand the basis for incongruence among phylogenomic trees. We were motivated by the observation that trees from two recent avian phylogenomic studies exhibit conflicts. Those studies used different strategies: 1) collecting many characters [$\sim$ 42 mega base pairs (Mbp) of sequence data] from 48 birds, sometimes including only one taxon for each major clade; and 2) collecting fewer characters ($\sim$ 0.4 Mbp) from 198 birds, selected to subdivide long branches. However, the studies also used different data types: the taxon-poor data matrix comprised 68% non-coding sequences whereas coding exons dominated the taxon-rich data matrix. This difference raises the question of whether the primary reason for incongruence is the number of sites, the number of taxa, or the data type. To test among these alternative hypotheses we assembled a novel, large-scale data matrix comprising 90% non-coding sequences from 235 bird species. Although increased taxon sampling appeared to have a positive impact on phylogenetic analyses the most important variable was data type. Indeed, by analyzing different subsets of the taxa in our data matrix we found that increased taxon sampling actually resulted in increased congruence with the tree from the previous taxon-poor study (which had a majority of non-coding data) instead of the taxon-rich study (which largely used coding data). We suggest that the observed differences in the estimates of topology for these studies reflect data-type effects due to violations of the models used in phylogenetic analyses, some of which may be difficult to detect. If incongruence among trees estimated using phylogenomic methods largely reflects problems with model fit developing more "biologically-realistic" models is likely to be critical for efforts to reconstruct the tree of life. [Birds; coding exons; GTR model; model fit; Neoaves; non-coding DNA; phylogenomics; taxon sampling.].


Assuntos
Aves/classificação , Classificação/métodos , Conjuntos de Dados como Assunto , Filogenia , Animais , Genoma/genética , Genômica , Modelos Biológicos
15.
Mol Biol Evol ; 33(4): 1110-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26715628

RESUMO

Production of massive DNA sequence data sets is transforming phylogenetic inference, but best practices for analyzing such data sets are not well established. One uncertainty is robustness to missing data, particularly in coalescent frameworks. To understand the effects of increasing matrix size and loci at the cost of increasing missing data, we produced a 90 taxon, 2.2 megabase, 4,800 locus sequence matrix of landfowl using target capture of ultraconserved elements. We then compared phylogenies estimated with concatenated maximum likelihood, quartet-based methods executed on concatenated matrices and gene tree reconciliation methods, across five thresholds of missing data. Results of maximum likelihood and quartet analyses were similar, well resolved, and demonstrated increasing support with increasing matrix size and sparseness. Conversely, gene tree reconciliation produced unexpected relationships when we included all informative loci, with certain taxa placed toward the root compared with other approaches. Inspection of these taxa identified a prevalence of short average contigs, which potentially biased gene tree inference and caused erroneous results in gene tree reconciliation. This suggests that the more problematic missing data in gene tree-based analyses are partial sequences rather than entire missing sequences from locus alignments. Limiting gene tree reconciliation to the most informative loci solved this problem, producing well-supported topologies congruent with concatenation and quartet methods. Collectively, our analyses provide a well-resolved phylogeny of landfowl, including strong support for previously problematic relationships such as those among junglefowl (Gallus), and clarify the position of two enigmatic galliform genera (Lerwa, Melanoperdix) not sampled in previous molecular phylogenetic studies.


Assuntos
Evolução Molecular , Galliformes/genética , Filogenia , Análise de Sequência de DNA/métodos , Animais , Viés , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos
16.
Proc Biol Sci ; 284(1854)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28469029

RESUMO

Dispersal ability is a key factor in determining insular distributions and island community composition, yet non-vagile terrestrial organisms widely occur on oceanic islands. The landfowl (pheasants, partridges, grouse, turkeys, quails and relatives) are generally poor dispersers, but the Old World quail (Coturnix) are a notable exception. These birds evolved small body sizes and high-aspect-ratio wing shapes, and hence are capable of trans-continental migrations and trans-oceanic colonization. Two monotypic partridge genera, Margaroperdix of Madagascar and Anurophasis of alpine New Guinea, may represent additional examples of trans-marine dispersal in landfowl, but their body size and wing shape are typical of poorly dispersive continental species. Here, we estimate historical relationships of quail and their relatives using phylogenomics, and infer body size and wing shape evolution in relation to trans-marine dispersal events. Our results show that Margaroperdix and Anurophasis are nested within the Coturnix quail, and are each 'island giants' that independently evolved from dispersive, Coturnix-like ancestral populations that colonized and were subsequently isolated on Madagascar and New Guinea. This evolutionary cycle of gain and loss of dispersal ability, coupled with extinction of dispersive taxa, can result in the false appearance that non-vagile taxa somehow underwent rare oceanic dispersal.


Assuntos
Distribuição Animal , Evolução Biológica , Galliformes/classificação , Filogenia , Animais , Coturnix , Ilhas , Madagáscar , Nova Guiné
17.
Mol Phylogenet Evol ; 109: 217-225, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28088402

RESUMO

The phylogeny of the Phasianidae (pheasants, partridges, and allies) has been studied extensively. However, these studies have largely ignored three enigmatic genera because of scarce DNA source material and limited overlapping phylogenetic data: blood pheasants (Ithaginis), snow partridges (Lerwa), and long-billed partridges (Rhizothera). Thus, phylogenetic positions of these three genera remain uncertain in what is otherwise a well-resolved phylogeny. Previous studies using different data types place Lerwa and Ithaginis in similar positions, but the absence of overlapping data means the relationship between them could not be inferred. Rhizothera was originally described in the genus Perdix (true partridges), although a partial cytochrome b (CYB) sequence suggests it is sister to Pucrasia (koklass pheasant). To identify robust relationships among Ithaginis, Lerwa, Rhizothera, and their phasianid relatives, we used 3692 ultra-conserved element (UCE) loci and complete mitogenomes from 19 species including previously hypothesized relatives of the three focal genera and representatives from all major phasianid clades. We used DNA extracted from historical specimen toepads for species that lacked fresh tissue in museum collections. Maximum likelihood and multispecies coalescent UCE analyses strongly supported Lerwa sister to a large clade which included Ithaginis at its base, and also including turkey, grouse, typical pheasants, tragopans, Pucrasia, and Perdix. Rhizothera was also in this clade, sister to a diverse group comprising Perdix, typical pheasants, Pucrasia, turkey and grouse. Mitogenomic genealogies differed from UCEs topologies, supporting a sister relationship between Ithaginis and Lerwa rather than a grade. The position of Rhizothera using mitogenomes depended on analytical choices. Unpartitioned and codon-based analyses placed Rhizothera sister to a tragopan clade, whereas a partitioned DNA model of the mitogenome was congruent with UCE results. In all mitogenome analyses, Pucrasia was sister to a clade including Perdix and the typical pheasants with high support, in contrast to UCEs and published nuclear intron data. Due to the strong support and consistent topology provided by all UCE analyses, we have identified phylogenetic relationships of these three enigmatic, poorly-studied, phasianid taxa.


Assuntos
Bases de Dados Genéticas , Galliformes/classificação , Galliformes/genética , Genoma Mitocondrial , Genômica , Filogenia , Animais , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/genética , Especificidade da Espécie
18.
Syst Biol ; 65(4): 612-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26865273

RESUMO

Rapid evolutionary radiations are expected to require large amounts of sequence data to resolve. To resolve these types of relationships many systematists believe that it will be necessary to collect data by next-generation sequencing (NGS) and use multispecies coalescent ("species tree") methods. Ultraconserved element (UCE) sequence capture is becoming a popular method to leverage the high throughput of NGS to address problems in vertebrate phylogenetics. Here we examine the performance of UCE data for gallopheasants (true pheasants and allies), a clade that underwent a rapid radiation 10-15 Ma. Relationships among gallopheasant genera have been difficult to establish. We used this rapid radiation to assess the performance of species tree methods, using ∼600 kilobases of DNA sequence data from ∼1500 UCEs. We also integrated information from traditional markers (nuclear intron data from 15 loci and three mitochondrial gene regions). Species tree methods exhibited troubling behavior. Two methods [Maximum Pseudolikelihood for Estimating Species Trees (MP-EST) and Accurate Species TRee ALgorithm (ASTRAL)] appeared to perform optimally when the set of input gene trees was limited to the most variable UCEs, though ASTRAL appeared to be more robust than MP-EST to input trees generated using less variable UCEs. In contrast, the rooted triplet consensus method implemented in Triplec performed better when the largest set of input gene trees was used. We also found that all three species tree methods exhibited a surprising degree of dependence on the program used to estimate input gene trees, suggesting that the details of likelihood calculations (e.g., numerical optimization) are important for loci with limited phylogenetic information. As an alternative to summary species tree methods we explored the performance of SuperMatrix Rooted Triple - Maximum Likelihood (SMRT-ML), a concatenation method that is consistent even when gene trees exhibit topological differences due to the multispecies coalescent. We found that SMRT-ML performed well for UCE data. Our results suggest that UCE data have excellent prospects for the resolution of difficult evolutionary radiations, though specific attention may need to be given to the details of the methods used to estimate species trees.


Assuntos
Classificação/métodos , Modelos Biológicos , Filogenia , Evolução Biológica , Sequenciamento de Nucleotídeos em Larga Escala , Probabilidade
19.
Mol Phylogenet Evol ; 102: 320-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27369454

RESUMO

The Cracidae (curassows, guans, and chachalacas) include some of the most spectacular and endangered Neotropical bird species. They lack a comprehensive phylogenetic hypothesis, hence their geographic origin and the history of their diversification remain unclear. We present a species-level phylogeny of Cracidae inferred from a matrix of 430 ultraconserved elements (UCEs; at least one species sampled per genus) and eight more variable loci (introns and mtDNA; all available species). We use this phylogeny along with probabilistic biogeographic modeling to test whether Gondwanan vicariance, ancient dispersal to South America, ancient dispersal from South America, or massive global cooling isolated cracids in the Neotropics. Contrary to previous estimates that extant cracids diversified in the Cretaceous, our fossil-calibrated divergence time estimates instead support that crown Cracidae originated in the late Miocene. Species-rich genera Crax, Penelope, and Ortalis began diversifying as recently as 3Mya. Biogeographic reconstructions indicate that modern cracids originated in Mesoamerica and were isolated from a widespread Laurasian ancestor, consistent with the massive global cooling hypothesis. Current South American diversity is the result of multiple colonization events following uplift of the Panamanian Isthmus, coupled with rapid diversification and evolution of secondary sympatry. Of the four major cracid lineages (curassows, chachalacas, typical guans, horned guan), the only lineage that has failed to colonize and diversify South America is the unique horned guan (Oreophasis derbianus), which is sister to curassows and chachalacas rather than typical guans.


Assuntos
Galliformes/classificação , Mitocôndrias/genética , Animais , Evolução Biológica , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fósseis/história , Galliformes/genética , Loci Gênicos , História Antiga , Íntrons , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Mol Phylogenet Evol ; 98: 123-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26879712

RESUMO

The Holarctic phasianid clade of the grouse and ptarmigan has received substantial attention in areas such as evolution of mating systems, display behavior, and population ecology related to their conservation and management as wild game species. There are multiple molecular phylogenetic studies that focus on grouse and ptarmigan. In spite of this, there is little consensus regarding historical relationships, particularly among genera, which has led to unstable and partial taxonomic revisions. We estimated the phylogeny of all currently recognized species using a combination of novel data from seven nuclear loci (largely intron sequences) and published data from one additional autosomal locus, two W-linked loci, and four mitochondrial regions. To explore relationships among genera and assess paraphyly of one genus more rigorously, we then added over 3000 ultra-conserved element (UCE) loci (over 1.7million bp) gathered using Illumina sequencing. The UCE topology agreed with that of the combined nuclear intron and previously published sequence data with 100% bootstrap support for all relationships. These data strongly support previous studies separating Bonasa from Tetrastes and Dendragapus from Falcipennis. However, the placement of Lagopus differed from previous studies, and we found no support for Falcipennis monophyly. Biogeographic analysis suggests that the ancestors of grouse and ptarmigan were distributed in the New World and subsequently underwent at least four dispersal events between the Old and New Worlds. Divergence time estimates from maternally-inherited and autosomal markers show stark differences across this clade, with divergence time estimates from maternally-inherited markers being nearly half that of the autosomal markers at some nodes, and nearly twice that at other nodes.


Assuntos
Sequência Conservada/genética , DNA Mitocondrial/genética , Galliformes/classificação , Galliformes/genética , Íntrons/genética , Filogenia , Animais , Núcleo Celular/genética , Evolução Molecular , Feminino , Masculino , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA