RESUMO
BACKGROUND: Trio exome sequencing can be used to investigate congenital abnormalities identified on pregnancy ultrasound, but its use in an Australian context has not been assessed. AIMS: Assess clinical outcomes and changes in management after expedited genomic testing in the prenatal period to guide the development of a model for widespread implementation. MATERIALS AND METHODS: Forty-three prospective referrals for whole exome sequencing, including 40 trios (parents and pregnancy), two singletons and one duo were assessed in a tertiary hospital setting with access to a state-wide pathology laboratory. Diagnostic yield, turn-around time (TAT), gestational age at reporting, pregnancy outcome, change in management and future pregnancy status were assessed for each family. RESULTS: A clinically significant genomic diagnosis was made in 15/43 pregnancies (35%), with an average TAT of 12 days. Gestational age at time of report ranged from 16 + 5 to 31 + 6 weeks (median 21 + 3 weeks). Molecular diagnoses included neuromuscular and skeletal disorders, RASopathies and a range of other rare Mendelian disorders. The majority of families actively used the results in pregnancy decision making as well as in management of future pregnancies. CONCLUSIONS: Rapid second trimester prenatal genomic testing can be successfully delivered to investigate structural abnormalities in pregnancy, providing crucial guidance for current and future pregnancy management. The time-sensitive nature of this testing requires close laboratory and clinical collaboration to ensure appropriate referral and result communication. We found the establishment of a prenatal coordinator role and dedicated reporting team to be important facilitators. We propose this as a model for genomic testing in other prenatal services.
RESUMO
The BCR::ABL1 gene fusion initiates chronic myeloid leukemia (CML); however, evidence has accumulated from studies of highly selected cohorts that variants in other cancer-related genes are associated with treatment failure. Nevertheless, the true incidence and impact of additional genetic abnormalities (AGA) at diagnosis of chronic phase (CP)-CML is unknown. We sought to determine whether AGA at diagnosis in a consecutive imatinib-treated cohort of 210 patients enrolled in the TIDEL-II trial influenced outcome despite a highly proactive treatment intervention strategy. Survival outcomes including overall survival, progression-free survival, failure-free survival, and BCR::ABL1 kinase domain mutation acquisition were evaluated. Molecular outcomes were measured at a central laboratory and included major molecular response (MMR, BCR::ABL1 ≤0.1%IS), MR4 (BCR::ABL1 ≤0.01%IS), and MR4.5 (BCR::ABL1 ≤0.0032%IS). AGA included variants in known cancer genes and novel rearrangements involving the formation of the Philadelphia chromosome. Clinical outcomes and molecular response were assessed based on the patient's genetic profile and other baseline factors. AGA were identified in 31% of patients. Potentially pathogenic variants in cancer-related genes were detected in 16% of patients at diagnosis (including gene fusions and deletions) and structural rearrangements involving the Philadelphia chromosome (Ph-associated rearrangements) were detected in 18%. Multivariable analysis demonstrated that the combined genetic abnormalities plus the EUTOS long-term survival clinical risk score were independent predictors of lower molecular response rates and higher treatment failure. Despite a highly proactive treatment intervention strategy, first-line imatinib-treated patients with AGA had poorer response rates. These data provide evidence for the incorporation of genomically-based risk assessment for CML.
Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide de Fase Crônica , Humanos , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/uso terapêutico , Cromossomo Filadélfia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide de Fase Crônica/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest. Thus, there is a move towards less use of insecticides and increased adoption of integrated pest management strategies using a wide range of non-chemical and chemical control methods. For good pest control there is a need to understand the mode of action and selectivity of insecticides, the life cycles of the pests and their biology and behaviours, all of which can benefit from good quality genome data. Here we present the complete assembled (chromosome level) genomes (incl. mtDNA) of 19 insect pests, Agriotes lineatus (click beetle/wireworm), Aphis gossypii (melon/cotton aphid), Bemisia tabaci (cotton whitefly), Brassicogethes aeneus (pollen beetle), Ceutorhynchus obstrictus (seedpod weevil), Chilo suppressalis (striped rice stem borer), Chrysodeixis includens (soybean looper), Diabrotica balteata (cucumber beetle), Diatraea saccharalis (sugar cane borer), Nezara viridula (green stink bug), Nilaparvata lugens (brown plant hopper), Phaedon cochleariae (mustard beetle), Phyllotreta striolata (striped flea beetle), Psylliodes chrysocephala (cabbage stem flea beetle), Spodoptera exigua (beet army worm), Spodoptera littoralis (cotton leaf worm), Diabrotica virgifera (western corn root worm), Euschistus heros (brown stink bug) and Phyllotreta cruciferae (crucifer flea beetle). For the first 15 of these we also present the annotation of genes encoding potential xenobiotic detoxification enzymes. This public resource will aid in the elucidation and monitoring of resistance mechanisms, the development of highly selective chemistry and potential techniques to disrupt behaviour in a way that limits the effect of the pests.
Assuntos
Afídeos , Besouros , Heterópteros , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Agricultura/métodos , Controle de Pragas , Besouros/genética , Controle de Insetos/métodosRESUMO
BACKGROUND: Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.
Assuntos
Heterópteros , Inseticidas , Tisanópteros , Animais , Genoma , Humanos , Resistência a InseticidasRESUMO
BACKGROUND: Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.
Assuntos
Dípteros , Inseticidas , Animais , Cromossomos , Dípteros/genética , Tamanho do Genoma , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologiaRESUMO
Antarctic krill swarms are one of the largest known animal aggregations, and yet, despite being the keystone species of the Southern Ocean, little is known about how swarms are formed and maintained. Understanding the local interactions between individuals that provide the basis for these swarms is fundamental to knowing how swarms arise in nature, and what potential factors might lead to their breakdown. Here, we analysed the trajectories of captive, wild-caught krill in 3D to determine individual-level interaction rules and quantify patterns of information flow. Our results demonstrate that krill align with near neighbours and that they regulate both their direction and speed relative to the positions of groupmates. These results suggest that social factors are vital to the formation and maintenance of swarms. Furthermore, krill operate a novel form of collective organization, with measures of information flow and individual movement adjustments expressed most strongly in the vertical dimension, a finding not seen in other swarming species. This research represents a vital step in understanding the fundamentally important swarming behaviour of krill.
Assuntos
Euphausiacea , Animais , Regiões Antárticas , Euphausiacea/fisiologiaRESUMO
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Assuntos
Artrópodes , Inseticidas , Animais , Artrópodes/metabolismo , Abelhas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica , Inseticidas/toxicidade , Filogenia , Xenobióticos/toxicidadeRESUMO
Antarctic krill (Euphausia superba) are amongst the most abundant animals on Earth, with a circumpolar distribution in the Southern Ocean. Genetic and genomic studies have failed to detect any population structure for the species, suggesting a single panmictic population. However, the hyper-abundance of krill slows the rate of genetic differentiation, masking potential underlying structure. Here we use high-throughput sequencing of bacterial 16S rRNA genes to show that krill bacterial epibiont communities exhibit spatial structuring, driven mainly by distance rather than environmental factors, especially for strongly krill-associated bacteria. Estimating the ecological processes driving bacterial community turnover indicated this was driven by bacterial dispersal limitation increasing with geographic distance. Furthermore, divergent epibiont communities generated from a single krill swarm split between aquarium tanks under near-identical conditions suggests physical isolation in itself can cause krill-associated bacterial communities to diverge. Our findings show that Antarctic krill-associated bacterial communities are geographically structured, in direct contrast with the lack of structure observed for krill genetic and genomic data.
Assuntos
Euphausiacea , Animais , Regiões Antárticas , Bactérias/genética , Euphausiacea/genética , RNA Ribossômico 16S/genéticaRESUMO
In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.
Assuntos
Grão Comestível/crescimento & desenvolvimento , Dosagem de Genes , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Amido/metabolismo , Triticum/genética , Grão Comestível/genética , Proteínas de Plantas/metabolismo , Poliploidia , Receptores de Superfície Celular/metabolismo , Triticum/crescimento & desenvolvimentoRESUMO
OBJECTIVE: New technologies present new ethical dilemmas. Our ethical intuitions may mislead us in relation to new technologies such as nuclear power, vaccines, GMOs and assistive reproductive technologies (ART). Between 1999 and 2008 the number of ART treatment cycles increased by 265% in Ireland. The implications and potentials of such technologies are profound - challenging existing understanding of humans' relationships to reproduction. Because such technologies are comparatively unregulated, and their use has only been occurring for a single generation, detailed investigation of how awareness of ART influences understanding of personal fertility is needed. METHOD: Data from a general Irish population of varied ages and both sexes (N = 611) were collected through an online survey which included demographics, knowledge of fertility, knowledge of ART and personal fertility. RESULTS: Latent class analysis revealed a typology of five groups of responders to ART distinguished by their attitudes and knowledge of this technology. These groups are labelled as 'Worried Yet Willing', 'Live and Let Live', 'Disengaged', 'Judgemental' and 'Conflicted'. CONCLUSION: Responses to the introduction of ART in Ireland fall into at least five distinct groups. Understanding of the distinguishing features of these types of responders is important for fertility healthcare professionals in terms of service development and delivery. Implications for the direction of future related research is discussed.
Assuntos
Conscientização , Fertilidade/fisiologia , Conhecimentos, Atitudes e Prática em Saúde , Técnicas de Reprodução Assistida/estatística & dados numéricos , Adulto , Atitude do Pessoal de Saúde , Feminino , Humanos , Internet , Irlanda , Masculino , Gravidez , Técnicas de Reprodução Assistida/tendências , Inquéritos e QuestionáriosRESUMO
BACKGROUND: As a step towards understanding coral immunity we present the first whole transcriptome analysis of the acute responses of Acropora millepora to challenge with the bacterial cell wall derivative MDP and the viral mimic poly I:C, defined immunogens provoking distinct but well characterised responses in higher animals. RESULTS: These experiments reveal similarities with the responses both of arthropods and mammals, as well as coral-specific effects. The most surprising finding was that MDP specifically induced three members of the GiMAP gene family, which has been implicated in immunity in mammals but is absent from Drosophila and Caenorhabditis. Like their mammalian homologs, GiMAP genes are arranged in a tandem cluster in the coral genome. CONCLUSIONS: A phylogenomic survey of this gene family implies ancient origins, multiple independent losses and lineage-specific expansions during animal evolution. Whilst functional convergence cannot be ruled out, GiMAP expression in corals may reflect an ancestral role in immunity, perhaps in phagolysosomal processing.
Assuntos
Antozoários/genética , Antozoários/imunologia , GTP Fosfo-Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Imunidade Inata/genética , Plantas/imunologia , Transcrição Gênica/imunologia , Acetilmuramil-Alanil-Isoglutamina/imunologia , Sequência de Aminoácidos , Animais , Antozoários/enzimologia , Parede Celular/imunologia , Parede Celular/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Perfilação da Expressão Gênica , Humanos , Mamíferos/imunologia , Dados de Sequência Molecular , Poli I-C/imunologia , Estrutura Terciária de Proteína , Pseudomonas/citologia , Regulação para Cima/imunologiaRESUMO
Pathogenic variants in DNMT3A are most commonly associated with Tatton-Brown-Rahman Syndrome (TBRS), but includes other phenotypes such as Heyn-Sproul-Jackson syndrome and acute myeloid leukemia (AML). We describe a patient presenting to the neuromuscular clinic with a de novo missense variant in DNMT3A where the striking clinical feature is that of a congenital myopathy with associated episodes of rhabdomyolysis, severe myalgias and chest pain along with phenotypic features associated with TBRS. Muscle biopsy showed minor myopathic features and cardiac investigations revealed mildly impaired bi-ventricular systolic function. We confirmed the DNA methylation profile matched haplo-insufficient TBRS cases, consistent with a loss of methyltransferase activity. Our report emphasizes the phenotypic overlap of patients with syndromic disorders presenting to neuromuscular clinics and limitations of gene panels in establishing a molecular diagnosis.
Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Doenças Musculares , Rabdomiólise , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Mutação , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Fenótipo , Rabdomiólise/diagnóstico , Rabdomiólise/genéticaRESUMO
Regular monitoring is an important component of the successful management of pelagic animals of interest to commercial fisheries. Here we provide a biomass estimate for Antarctic krill (Euphausia superba) in the eastern sector of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Division 58.4.2 (55°E to 80°E; area = 775,732 km2) using data collected during an acoustic-trawl survey carried out in February and March 2021. Using acoustic data collected in day-time and trawl data, areal biomass density was estimated as 8.3 gm-2 giving a total areal krill biomass of 6.48 million tonnes, with a 28.9% coefficient of variation (CV). The inaccessibility of the East Antarctic makes fisheries-independent surveys of Antarctic krill expensive and time consuming, so we also assessed the efficacy of extrapolating smaller surveys to a wider area. During the large-scale survey a smaller scale survey (centre coordinates -66.28°S 63.35°E, area = 4,902 km2) was conducted. We examine how representative krill densities from the small-scale (Mawson box) survey were over a latitudinal range by comparing krill densities from the large-scale survey split into latitudinal bands. We found the small scale survey provided a good representation of the statistical distribution of krill densities within its latitudinal band (KS-test, D = 0.048, p-value = 0.98), as well as mean density (t-test p-value = 0.44), but not outside of the band. We recommend further in situ testing of this approach.
Assuntos
Euphausiacea , Animais , Regiões Antárticas , Biomassa , Pesqueiros , Alimentos MarinhosRESUMO
Mutation detection is increasingly used for the management of hematological malignancies. Prior whole transcriptome and whole exome sequencing studies using total RNA and DNA identified diverse mutation types in cancer-related genes associated with treatment failure in patients with chronic myeloid leukemia. Variants included single-nucleotide variants and small insertions/deletions, plus fusion transcripts and partial or whole gene deletions. The hypothesis that all of these mutation types could be detected by a single cost-effective hybridization capture next-generation sequencing method using total RNA was assessed. A method was developed that targeted 130 genes relevant for myeloid and lymphoid leukemia. Retrospective samples with 121 precharacterized variants were tested using total RNA and/or DNA. Concordance of detection of precharacterized variants using RNA or DNA was 96%, whereas the enhanced sensitivity identified additional variants. Comparison between 24 matched DNA and RNA samples demonstrated 95.3% of 170 variants detectable using DNA were detected using RNA, including all but one variant predicted to activate nonsense-mediated decay. RNA identified an additional 10 variants, including fusion transcripts. Furthermore, the true effect of splice variants on RNA splicing was only evident using RNA. In conclusion, capture sequencing using total RNA alone is suitable for detecting a range of variants relevant in chronic myeloid leukemia and may be more broadly applied to other hematological malignancies where diverse variant types define risk groups.
Assuntos
Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , RNA , Estudos RetrospectivosRESUMO
BACKGROUND: The primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing. RESULTS: We developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels. CONCLUSION: Our work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Cromossomos Humanos X/genética , Éxons/genética , Feminino , Humanos , MasculinoRESUMO
Animal positions within moving groups may reflect multiple motivations including saving energy and sensing neighbors. These motivations have been proposed for schools of Antarctic krill, but little is known about their three-dimensional structure. Stereophotogrammetric images of Antarctic krill schooling in the laboratory are used to determine statistical distributions of swimming speed, nearest neighbor distance, and three-dimensional nearest neighbor positions. The krill schools swim at speeds of two body lengths per second at nearest neighbor distances of one body length and reach similarly high levels of organization as fish schools. The nearest neighbor position distribution is highly anisotropic and shows that Antarctic krill prefer to swim in the propulsion jet of their anterior neighbor. This position promotes communication and coordination among schoolmates via hydrodynamic signals within the pulsed jet created by the metachronal stroking of the neighboring krill's pleopods. The hydrodynamic communication channel therefore plays a large role in structuring the school. Further, Antarctic krill avoid having a nearest neighbor directly overhead, possibly to avoid blockage of overhead light needed for orientation. Other factors, including the elongated body shape of Antarctic krill and potential energy savings, also may help determine the three dimensional spatial structure of tightly packed krill schools.
RESUMO
A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.