Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Syst Biol ; 72(2): 249-263, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35583314

RESUMO

Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.].


Assuntos
Oenothera , Animais , Filogenia , Oenothera/genética , Sulfato de Cálcio , Polinização
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34103391

RESUMO

As COVID-19 continues to spread across the world, it is increasingly important to understand the factors that influence its transmission. Seasonal variation driven by responses to changing environment has been shown to affect the transmission intensity of several coronaviruses. However, the impact of the environment on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains largely unknown, and thus seasonal variation remains a source of uncertainty in forecasts of SARS-CoV-2 transmission. Here we address this issue by assessing the association of temperature, humidity, ultraviolet radiation, and population density with estimates of transmission rate (R). Using data from the United States, we explore correlates of transmission across US states using comparative regression and integrative epidemiological modeling. We find that policy intervention ("lockdown") and reductions in individuals' mobility are the major predictors of SARS-CoV-2 transmission rates, but, in their absence, lower temperatures and higher population densities are correlated with increased SARS-CoV-2 transmission. Our results show that summer weather cannot be considered a substitute for mitigation policies, but that lower autumn and winter temperatures may lead to an increase in transmission intensity in the absence of policy interventions or behavioral changes. We outline how this information may improve the forecasting of COVID-19, reveal its future seasonal dynamics, and inform intervention policies.


Assuntos
COVID-19/transmissão , Temperatura Baixa , Densidade Demográfica , Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/legislação & jurisprudência , Previsões , Humanos , Movimento , SARS-CoV-2 , Estações do Ano , Estados Unidos/epidemiologia
3.
Mol Phylogenet Evol ; 166: 107332, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687842

RESUMO

Polyploidy and hybridization are important processes in seed-free plant evolution. However, a major gap lies in our understanding of how these processes affect the evolutionary history of high-ploidy systems. The heterosporous lycophyte genus Isoëtes is a lineage with many putative hybrids and high-level polyploid taxa (ranging from tetraploid to dodecaploid). Here, we use a complex of western North American Isoëtes, to understand the role of hybridization and high-level polyploidy in generating and maintaining novel diversity. To uncover these processes, we use restriction-site associated DNA sequencing (RADseq), multiple alleles of a single low-copy nuclear marker, whole plastomes, cytology (genome size estimates and chromosome counts), and reproductive status (fertile or sterile). With this dataset, we show that hybridization occurs easily between species in this complex and is bidirectional between identical, but not different, cytotypes. Furthermore, we show that fertile allopolyploids appear to have formed repeatedly from sterile homoploid and interploid hybrids. We propose that low prezygotic reproductive barriers and a high frequency of whole-genome duplication allow for high-level polyploid systems to generate novel lineages, and that these mechanisms may be important in shaping extant Isoëtes diversity.


Assuntos
Ploidias , Poliploidia , Tamanho do Genoma , Humanos , América do Norte , Filogenia
4.
Mol Phylogenet Evol ; 152: 106938, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791300

RESUMO

Cryptic species are present throughout the tree of life. They are especially prevalent in ferns, because of processes such hybridization, polyploidy, and reticulate evolution. In addition, the simple morphology of ferns limits phenotypic variation and makes it difficult to detect cryptic species. The model fern genus Ceratopteris has long been suspected to harbor cryptic diversity, in particular within the highly polymorphic C. thalictroides. Yet no studies have included samples from throughout its pan-tropical range or utilized genomic sequencing, making it difficult to assess the full extent of cryptic variation within this genus. Here, we present the first multilocus phylogeny of the genus using reduced representation genomic sequencing (RADseq) and examine population structure, phylogenetic relationships, and ploidy level variation. We recover similar species relationships found in previous studies, find support for the cryptic species C. gaudichaudii as genetically distinct, and identify novel genomic variation within two of the mostly broadly distributed species in the genus, C. thalictroides and C. cornuta. Finally, we detail the utility of our approach for working on cryptic, reticulate groups of ferns. Specifically, it does not require a reference genome, of which there are very few available for ferns. RADseq is a cost-effective way to work with study groups lacking genomic resources, and to obtain the thousands of nuclear markers needed to untangle species complexes.


Assuntos
Genoma de Planta/genética , Filogenia , Pteridaceae/classificação , Pteridaceae/genética , Sequência de Bases , Mapeamento Cromossômico , Genômica , Hibridização Genética , Poliploidia , Especificidade da Espécie
5.
Am J Bot ; 106(10): 1365-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31545874

RESUMO

PREMISE: Spore-bearing plants are capable of dispersing very long distances. However, it is not known if gene flow can prevent genetic divergence in widely distributed taxa. Here we address this issue, and examine systematic relationships at a global geographic scale for the fern genus Pteridium. METHODS: We sampled plants from 100 localities worldwide, and generated nucleotide data from four nuclear genes and two plastid regions. We also examined 2801 single nucleotide polymorphisms detected by a restriction site-associated DNA approach. RESULTS: We found evidence for two distinct diploid species and two allotetraploids between them. The "northern" species (Pteridium aquilinum) has distinct groups at the continental scale (Europe, Asia, Africa, and North America). The northern European subspecies pinetorum appears to involve admixture among all of these. A sample from the Hawaiian Islands contained elements of both North American and Asian P. aquilinum. The "southern" species, P. esculentum, shows little genetic differentiation between South American and Australian samples. Components of African genotypes are detected on all continents. CONCLUSIONS: We find evidence of distinct continental-scale genetic differentiation in Pteridium. However, on top of this is a clear signal of recent hybridization. Thus, spore-bearing plants are clearly capable of extensive long-distance gene flow; yet appear to have differentiated genetically at the continental scale. Either gene flow in the past was at a reduced level, or vicariance is possible even in the face of long-distance gene flow.


Assuntos
Gleiquênias , Pteridium , África , Ásia , Austrália , Europa (Continente) , Havaí , América do Norte
6.
BMC Ecol Evol ; 23(1): 66, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974080

RESUMO

BACKGROUND: The evening primrose family (Onagraceae) includes 664 species (803 taxa) with a center of diversity in the Americas, especially western North America. Ongoing research in Onagraceae includes exploring striking variation in floral morphology, scent composition, and breeding system, as well as the role of these traits in driving diversity among plants and their interacting pollinators and herbivores. However, these efforts are limited by the lack of a comprehensive, well-resolved phylogeny. Previous phylogenetic studies based on a few loci strongly support the monophyly of the family and the sister relationship of the two largest tribes but fail to resolve several key relationships. RESULTS: We used a target enrichment approach to reconstruct the phylogeny of Onagraceae using 303 highly conserved, low-copy nuclear loci. We present a phylogeny for Onagraceae with 169 individuals representing 152 taxa sampled across the family, including extensive sampling within the largest tribe, Onagreae. Deep splits within the family are strongly supported, whereas relationships among closely related genera and species are characterized by extensive conflict among individual gene trees. CONCLUSIONS: This phylogenetic resource will augment current research projects focused throughout the family in genomics, ecology, coevolutionary dynamics, biogeography, and the evolution of characters driving diversification in the family.


Assuntos
Oenothera biennis , Onagraceae , Humanos , Filogenia , Oenothera biennis/genética , Melhoramento Vegetal , Genômica
7.
Front Plant Sci ; 13: 807302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251082

RESUMO

The mechanisms controlling chromosome number, size, and shape, and the relationship of these traits to genome size, remain some of the least understood aspects of genome evolution. Across vascular plants, there is a striking disparity in chromosome number between homosporous and heterosporous lineages. Homosporous plants (comprising most ferns and some lycophytes) have high chromosome numbers compared to heterosporous lineages (some ferns and lycophytes and all seed plants). Many studies have investigated why homosporous plants have so many chromosomes. However, homospory is the ancestral condition from which heterospory has been derived several times. Following this phylogenetic perspective, a more appropriate question to ask is why heterosporous plants have so few chromosomes. Here, we review life history differences between heterosporous and homosporous plants, previous work on chromosome number and genome size in each lineage, known mechanisms of genome downsizing and chromosomal rearrangements, and conclude with future prospects for comparative research.

8.
Elife ; 112022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311640

RESUMO

The fern Ceratopteris richardii has been studied as a model organism for over 50 years because it is easy to grow and has a short life cycle. In particular, as the first homosporous vascular plant for which genomic resources were developed, C. richardii has been an important system for studying plant evolution. However, we know relatively little about the natural history of C. richardii. In this article, we summarize what is known about this aspect of C. richardii, and discuss how learning more about its natural history could greatly increase our understanding of the evolution of land plants.


Assuntos
Gleiquênias , Pteridaceae , Gleiquênias/genética , Genômica , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA