Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Plant Cell ; 33(2): 358-380, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793852

RESUMO

Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , RNA Bacteriano/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Modelos Biológicos , Mutação/genética , Óperon/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Synechocystis/genética
2.
Plant Physiol ; 189(3): 1204-1219, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35512089

RESUMO

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tilacoides/metabolismo
3.
Photochem Photobiol Sci ; 22(6): 1379-1391, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36853495

RESUMO

Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/química , Vibração , Carotenoides/metabolismo , Cianobactérias/metabolismo , Espectrofotometria Infravermelho
4.
Biophys J ; 121(15): 2849-2872, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794830

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity. Here, we probed photoinduced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation a numbed state forms, which remains in a non-photoexcitable structural state for at least ≈0.5 µs after absorption of a first photon.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo
5.
Plant Physiol ; 186(1): 569-580, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576804

RESUMO

State transitions are a low-light acclimation response through which the excitation of Photosystem I (PSI) and Photosystem II (PSII) is balanced; however, our understanding of this process in cyanobacteria remains poor. Here, picosecond fluorescence kinetics was recorded for the cyanobacterium Synechococcus elongatus using fluorescence lifetime imaging microscopy (FLIM), both upon chlorophyll a and phycobilisome (PBS) excitation. Fluorescence kinetics of single cells obtained using FLIM were compared with those of ensembles of cells obtained with time-resolved fluorescence spectroscopy. The global distribution of PSI and PSII and PBSs was mapped making use of their fluorescence kinetics. Both radial and lateral heterogeneity were found in the distribution of the photosystems. State transitions were studied at the level of single cells. FLIM results show that PSII quenching occurs in all cells, irrespective of their state (I or II). In S. elongatus cells, this quenching is enhanced in State II. Furthermore, the decrease of PSII fluorescence in State II was homogeneous throughout the cells, despite the inhomogeneous PSI/PSII ratio. Finally, some disconnected PBSs were resolved in most State II cells. Taken together our data show that PSI is enriched in the inner thylakoid, while state transitions occur homogeneously throughout the cell.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Synechococcus/química , Fluorescência , Cinética
6.
Plant Cell ; 31(4): 911-931, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30852554

RESUMO

Photosynthetic organisms must sense and respond to fluctuating environmental conditions in order to perform efficient photosynthesis and to avoid the formation of dangerous reactive oxygen species. The excitation energy arriving at each photosystem permanently changes due to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like plants and algae, have developed a mechanism, named "state transitions," that balances photosystem activities. Here, we characterize the role of the cytochrome b 6 f complex and phosphorylation reactions in cyanobacterial state transitions using Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 as model organisms. First, large photosystem II (PSII) fluorescence quenching was observed in State II, a result that does not appear to be related to energy transfer from PSII to PSI (spillover). This membrane-associated process was inhibited by betaine, Suc, and high concentrations of phosphate. Then, using different chemicals affecting the plastoquinone pool redox state and cytochrome b 6 f activity, we demonstrate that this complex is not involved in state transitions in S. elongatus or Synechocystis PCC6803. Finally, by constructing and characterizing 21 protein kinase and phosphatase mutants and using chemical inhibitors, we demonstrate that phosphorylation reactions are not essential for cyanobacterial state transitions. Thus, signal transduction is completely different in cyanobacterial and plant (green alga) state transitions.


Assuntos
Cianobactérias/metabolismo , Complexo Citocromos b6f/metabolismo , Fosforilação , Fotossíntese/fisiologia , Synechococcus/metabolismo , Synechocystis/metabolismo
7.
Photochem Photobiol Sci ; 19(5): 585-603, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163064

RESUMO

Photosynthetic organisms are exposed to a fluctuating environment in which light intensity and quality change continuously. Specific illumination of either photosystem (PSI or PSII) creates an energy imbalance, leading to the reduction or oxidation of the intersystem electron transport chain. This redox imbalance could trigger the formation of dangerous reactive oxygen species. Cyanobacteria, like plants and algae, have developed a mechanism to re-balance this preferential excitation of either reaction center, called state transitions. State transitions are triggered by changes in the redox state of the membrane-soluble plastoquinone (PQ) pool. In plants and green algae, these changes in redox potential are sensed by Cytochrome b6f, which interacts with a specific kinase that triggers the movement of the main PSII antenna (the light-harvesting complex II). By contrast, although cyanobacterial state transitions have been studied extensively, there is still no agreement about the molecular mechanism, the PQ redox state sensor and the signaling pathways involved. In this review, we aimed to critically evaluate the results published on cyanobacterial state transitions, and discuss the "new" and "old" models in the subject. The phycobilisome and membrane contributions to this physiological process were addressed and the current hypotheses regarding its signaling transduction pathway were discussed.


Assuntos
Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/química , Oxirredução , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química
8.
J Am Chem Soc ; 141(1): 520-530, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30511841

RESUMO

The orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCPO; blue light illumination results in the red active state, known as OCPR. The OCPR state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain. The mechanistic and dynamic-structural relations between photon absorption and formation of the OCPR state have remained largely unknown. Here, we employ a combination of time-resolved UV-visible and (polarized) mid-infrared spectroscopy to assess the electronic and structural dynamics of the carotenoid and the protein secondary structure, from femtoseconds to 0.5 ms. We identify a hereto unidentified carotenoid excited state in OCP, the so-called S* state, which we propose to play a key role in breaking conserved hydrogen-bond interactions between carotenoid and aromatic amino acids in the binding pocket. We arrive at a comprehensive reaction model where the hydrogen-bond rupture with conserved aromatic side chains at the carotenoid ß1-ring in picoseconds occurs at a low yield of <1%, whereby the ß1-ring retains a trans configuration with respect to the conjugated π-electron chain. This event initiates structural changes at the N-terminal domain in 1 µs, which allow the carotenoid to translocate into the N-terminal domain in 10 µs. We identified infrared signatures of helical elements that dock on the C-terminal domain ß-sheet in the dark and unfold in the light to allow domain separation. These helical elements do not move within the experimental range of 0.5 ms, indicating that domain separation occurs on longer time scales, lagging carotenoid translocation by at least 2 decades of time.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Luz , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
9.
Proc Natl Acad Sci U S A ; 113(12): E1655-62, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26957606

RESUMO

In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5-10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation.


Assuntos
Proteínas de Bactérias/química , Ficobilissomas/química , Synechocystis/metabolismo , Proteínas de Bactérias/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Transferência de Energia , Glutaral/farmacologia , Modelos Químicos , Modelos Moleculares , Mutação , Ficobilinas/efeitos da radiação , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Ficocianina/genética , Ficocianina/metabolismo , Ficocianina/efeitos da radiação , Conformação Proteica/efeitos da radiação , Subunidades Proteicas , Tolerância a Radiação , Espectrometria de Fluorescência , Synechocystis/genética , Synechocystis/efeitos da radiação , Espectrometria de Massas em Tandem
10.
Plant Physiol ; 175(3): 1283-1303, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935842

RESUMO

The photoactive Orange Carotenoid Protein (OCP) photoprotects cyanobacteria cells by quenching singlet oxygen and excess excitation energy. Its N-terminal domain is the active part of the protein, and the C-terminal domain regulates the activity. Recently, the characteristics of a family of soluble carotenoid-binding proteins (Helical Carotenoid Proteins [HCPs]), paralogs of the N-terminal domain of OCP, were described. Bioinformatics studies also revealed the existence of genes coding for homologs of CTD. Here, we show that the latter genes encode carotenoid proteins (CTDHs). This family of proteins contains two subgroups with distinct characteristics. One CTDH of each clade was further characterized, and they proved to be very good singlet oxygen quenchers. When synthesized in Escherichia coli or Synechocystis PCC 6803, CTDHs formed dimers that share a carotenoid molecule and are able to transfer their carotenoid to apo-HCPs and apo-OCP. The CTDHs from clade 2 have a cysteine in position 103. A disulfide bond is easily formed between the monomers of the dimer preventing carotenoid transfer. This suggests that the transfer of the carotenoid could be redox regulated in clade 2 CTDH. We also demonstrate here that apo-OCPs and apo-CTDHs are able to take the carotenoid directly from membranes, while HCPs are unable to do so. HCPs need the presence of CTDH to become holo-proteins. We propose that, in cyanobacteria, the CTDHs are carotenoid donors to HCPs.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Homologia de Sequência de Aminoácidos , Synechocystis/metabolismo , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Cantaxantina/metabolismo , Sequência Consenso , Escherichia coli/metabolismo , Evolução Molecular , Fluorescência , Modelos Biológicos , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Análise Espectral
11.
Biochim Biophys Acta Bioenerg ; 1858(4): 308-317, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188781

RESUMO

To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.


Assuntos
Aminoácidos/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/química , Fluorescência
12.
Plant Physiol ; 171(3): 1852-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208286

RESUMO

The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anabaena/genética , Proteínas de Bactérias/química , Carotenoides/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Fluorescência , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ficobilissomas/química , Ficobilissomas/metabolismo , Domínios Proteicos
13.
Photosynth Res ; 131(1): 105-117, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612863

RESUMO

A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.


Assuntos
Carotenoides/análise , Cianobactérias/química , Análise Espectral/métodos
14.
Plant Cell ; 26(1): 426-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24399299

RESUMO

The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)-associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCP(O), to an active red form, OCP(R). The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP's photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCP(R). A comparison of the spectroscopic properties of the RCP with OCP(R) indicates that critical protein-chromophore interactions within the C-terminal domain are weakened in the OCP(R) form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain.


Assuntos
Proteínas de Bactérias/fisiologia , Cianobactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Metabolismo Energético , Estrutura Terciária de Proteína , Proteólise
15.
Plant Cell ; 26(4): 1781-1791, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24748041

RESUMO

Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the photosynthetic reaction centers under high-light conditions. The photoactive orange carotenoid protein (OCP) is essential in this mechanism as a light sensor and energy quencher. When OCP is photoactivated by strong blue-green light, it is able to dissipate excess energy as heat by interacting with phycobilisomes. As a consequence, charge separation and recombination leading to the formation of singlet oxygen diminishes. Here, we demonstrate that OCP has another essential role. We observed that OCP also protects Synechocystis cells from strong orange-red light, a condition in which OCP is not photoactivated. We first showed that this photoprotection is related to a decrease of singlet oxygen concentration due to OCP action. Then, we demonstrated that, in vitro, OCP is a very good singlet oxygen quencher. By contrast, another carotenoid protein having a high similarity with the N-terminal domain of OCP is not more efficient as a singlet oxygen quencher than a protein without carotenoid. Although OCP is a soluble protein, it is able to quench the singlet oxygen generated in the thylakoid membranes. Thus, OCP has dual and complementary photoprotective functions as an energy quencher and a singlet oxygen quencher.

16.
Biochim Biophys Acta ; 1847(10): 1044-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26003409

RESUMO

Orange carotenoid protein (OCP) is a cyanobacterial photoactive protein which binds echinenone as a chromophore; it is involved in photoprotection of these photosynthetic organisms against intense illumination. In its resting state, OCP appears orange (OCPo), and turns into a red form (OCPr) when exposed to blue-green light. Here we have combined resonance Raman spectroscopy and molecular modeling to investigate the mechanisms underlying the electronic absorption properties of the different forms of OCP. Our results show that there are at least two carotenoid configurations in the OCPo, suggesting that it is quite flexible, and that the OCPo to OCPr transition must involve an increase of the apparent conjugation length of the bound echinenone. Resonance Raman indicates that this chromophore must be in an all-trans configuration in OCPo. Density functional theory (DFT) calculations, in agreement with the Raman spectra of both OCP forms, show that the OCPo to OCPr transition must involve either an echinenone s-cis to s-trans isomerization which would affect the position of its conjugated end-chain rings, or a bending of the echinenone rings which would bring them from out of the plane of the CC conjugated plane in the OCPo form into the CC plane in the OCPr form.

17.
J Am Chem Soc ; 138(36): 11616-22, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27546794

RESUMO

When exposed to intense sunlight, all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within tens of seconds, while the dramatic and potentially harmful light intensity fluctuations manifest also on shorter time scales. Here we show that, upon illumination, individual phycobilisomes from Synechocystis PCC 6803, which, in vivo under low-light conditions, harvest solar energy, and have the built-in capacity to switch rapidly and reversibly into light-activated energy-dissipating states. Simultaneously measured fluorescence intensity, lifetime, and spectra, compared with a multicompartmental kinetic model, revealed that essentially any subunit of a phycobilisome can be quenched, and that the core complexes were targeted most frequently. Our results provide the first evidence for fluorescence blinking from a biologically active system at physiological light intensities and suggest that the light-controlled switches to intrinsically available energy-dissipating states are responsible for a novel type of photoprotection in cyanobacteria. We anticipate other photosynthetic organisms to employ similar strategies to respond instantly to rapid solar light intensity fluctuations. A detailed understanding of the photophysics of photosynthetic antenna complexes is of great interest for bioinspired solar energy technologies.

18.
Plant Physiol ; 169(1): 737-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26195570

RESUMO

Plants, algae, and cyanobacteria have developed mechanisms to decrease the energy arriving at reaction centers to protect themselves from high irradiance. In cyanobacteria, the photoactive Orange Carotenoid Protein (OCP) and the Fluorescence Recovery Protein are essential elements in this mechanism. Absorption of strong blue-green light by the OCP induces carotenoid and protein conformational changes converting the orange (inactive) OCP into a red (active) OCP. Only the red orange carotenoid protein (OCP(r)) is able to bind to phycobilisomes, the cyanobacterial antenna, and to quench excess energy. In this work, we have constructed and characterized several OCP mutants and focused on the role of the OCP N-terminal arm in photoactivation and excitation energy dissipation. The N-terminal arm largely stabilizes the closed orange OCP structure by interacting with its C-terminal domain. This avoids photoactivation at low irradiance. In addition, it slows the OCP detachment from phycobilisomes by hindering fluorescence recovery protein interaction with bound OCP(r). This maintains thermal dissipation of excess energy for a longer time. Pro-22, at the beginning of the N-terminal arm, has a key role in the correct positioning of the arm in OCP(r), enabling strong OCP binding to phycobilisomes, but is not essential for photoactivation. Our results also show that the opening of the OCP during photoactivation is caused by the movement of the C-terminal domain with respect to the N-terminal domain and the N-terminal arm.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Proteínas de Bactérias/química , Escherichia coli , Fluorescência , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Ligação Proteica/efeitos da radiação
19.
Photosynth Res ; 127(1): 91-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25893897

RESUMO

Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.


Assuntos
Fluorometria/métodos , Modelos Biológicos , Ficobilissomas/química , Synechocystis/química , Simulação por Computador , Fluorescência , Mutação , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Fatores de Tempo
20.
Photosynth Res ; 130(1-3): 237-249, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27016082

RESUMO

Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.


Assuntos
Synechocystis/efeitos da radiação , Fluorescência , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA