Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200674

RESUMO

Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Peixes/metabolismo , Neuropeptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Aquicultura , Proteínas de Peixes/imunologia , Peixes , Brânquias/metabolismo , Humanos , Imunidade Inata/imunologia , Neuropeptídeos/imunologia , Pele/metabolismo
2.
J Fish Dis ; 44(10): 1619-1637, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34237181

RESUMO

Anti-nutritional factors in dietary components can have a negative impact on the intestinal barrier. Here, we present soya bean-induced changes in the intestine of juvenile zebrafish and the effect of yeast ß-glucan through a transcriptomic approach. The inclusion of soya bean meal affected the expression of several intestinal barrier function-related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, elovl6, slc51a, gpat2 and ATP-dependent peptidase activity (lonrf, clpxb) were altered in the intestinal tissue. The expression of immune-related genes like nlrc3, nlrp12, gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA repair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean fed group. Furthermore, our study suggests the plausible effect of yeast ß-glucan through the modulation of several genes that regulate immune responses and barrier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed soya bean meal and the efficacy of ß-glucan to counter these subtle inflammatory responses.


Assuntos
Doenças dos Peixes/prevenção & controle , Glycine max/química , Inflamação/veterinária , Enteropatias/prevenção & controle , Polissacarídeos/metabolismo , Transcriptoma/efeitos dos fármacos , Peixe-Zebra , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Inflamação/prevenção & controle , Enteropatias/imunologia , Intestinos , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Saccharomyces cerevisiae/química
3.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971781

RESUMO

Nutrient limited conditions are common in natural phytoplankton communities and are often used to increase the yield of lipids from industrial microalgae cultivations. Here we studied the effects of bioavailable nitrogen (N) and phosphorus (P) deprivation on the proteome and transcriptome of the oleaginous marine microalga Nannochloropsis gaditana. Turbidostat cultures were used to selectively apply either N or P deprivation, controlling for variables including the light intensity. Global (cell-wide) changes in the proteome were measured using Tandem Mass Tag (TMT) and LC-MS/MS, whilst gene transcript expression of the same samples was quantified by Illumina RNA-sequencing. We detected 3423 proteins, where 1543 and 113 proteins showed significant changes in abundance in N and P treatments, respectively. The analysis includes the global correlation between proteomic and transcriptomic data, the regulation of subcellular proteomes in different compartments, gene/protein functional groups, and metabolic pathways. The results show that triacylglycerol (TAG) accumulation under nitrogen deprivation was associated with substantial downregulation of protein synthesis and photosynthetic activity. Oil accumulation was also accompanied by a diverse set of responses including the upregulation of diacylglycerol acyltransferase (DGAT), lipase, and lipid body associated proteins. Deprivation of phosphorus had comparatively fewer, weaker effects, some of which were linked to the remodeling of respiratory metabolism.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Proteômica , Estramenópilas/metabolismo , Transcriptoma
4.
Fish Physiol Biochem ; 45(3): 1067-1081, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30915616

RESUMO

The present work focuses on the use of defatted biomass of the microalga Nannochloropsis sp. from the biodiesel industry, as a partial substitute of fish meal (FM) in diets for European sea bass. The effects of increasing inclusion levels of microalgal meal on growth performance, body composition, nutrient utilization, gut morphology, and innate immunity were evaluated after 93 days. A reference alga-free diet was the control (CTRL) diet, and the three experimental diets contained 5 (MA5), 10 (MA10), and 15% (MA15) of the microalgal meal. The microalga-rich diets were supplemented with DL-methionine to assure sea bass dietary requirement. Overall, nutrient apparent digestibilities (ADCs) of the diets were not altered by the microalgal inclusion, but energy ADC was highest in fish fed the CTRL diet (90% vs 88%). At the end of the trial, fish growth performance was similar among dietary treatments (DGI of 1.0), but fish fed MA10 had a significantly higher feed conversion ratio than those fed CTRL and MA5. Final whole body composition and nutrient gain of fish fed the different diets were similar. No significant differences were detected in gut morphology among treatments. Innate immune parameters (lysozyme, alternative complement pathway-ACH50, and peroxidase) were examined, and ACH50 of the fish fed MA15 was significantly lower than those fed MA10, suggesting a dose-dependent stimulation of the innate immune response. The present results indicate that defatted microalgal meal can replace fishmeal in European sea bass diets-at inclusion levels of up to 15%-contributing to a circular economy approach.


Assuntos
Ração Animal/análise , Bass/fisiologia , Proteínas Alimentares/análise , Microalgas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biocombustíveis , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Digestão , Distribuição Aleatória
5.
Microb Pathog ; 96: 72-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27154537

RESUMO

White spot syndrome virus (WSSV) is the most catastrophic pathogen the shrimp industry has ever encountered. VP28, the abundant envelope protein of WSSV was expressed in bacteria, the purified protein administered orally to Penaeus monodon juveniles and its immune modulatory effects examined. The results indicated significant up-regulation of caspase, penaeidin, crustin, astakine, syntenin, PmRACK, Rab7, STAT and C-type lectin in animals orally administered with this antigen. This revealed the immune modulations in shrimps followed by oral administration of rVP28P which resulted in the reduced transcription of viral gene vp28 and delay in mortality after WSSV challenge. The study suggests the potential of rVP28P to elicit a non-specific immune stimulation in shrimps.


Assuntos
Perfilação da Expressão Gênica , Fatores Imunológicos/biossíntese , Penaeidae/virologia , Proteínas do Envelope Viral/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Administração Oral , Animais , Fatores Imunológicos/genética , Penaeidae/imunologia , Proteínas do Envelope Viral/administração & dosagem
6.
Proteomics ; 14(13-14): 1660-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24782450

RESUMO

White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.


Assuntos
Penaeidae/imunologia , Penaeidae/virologia , Proteínas do Envelope Viral/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/análise , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Regulação da Expressão Gênica , Espectrometria de Massas , Dados de Sequência Molecular , Penaeidae/genética , Proteômica , Vacinação , Vacinas , Proteínas do Envelope Viral/administração & dosagem , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
7.
Fish Shellfish Immunol ; 40(2): 634-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25150451

RESUMO

This review describes the extant knowledge on the teleostean mucosal adaptive immune mechanisms, which is relevant for the development of oral or mucosal vaccines. In the last decade, a number of studies have shed light on the presence of new key components of mucosal immunity: a distinct immunoglobulin class (IgT or IgZ) and the polymeric Ig receptor (pIgR). In addition, intestinal T cells and their putative functions, antigen uptake mechanisms at mucosal surfaces and new mucosal vaccination strategies have been reported. New information on pIgR of Atlantic cod and common carp and comparison of natural and specific cell-mediated cytotoxicity in the gut of common carp and European seabass, is also included in this review. Based on the known facts about intestinal immunology and mucosal vaccination, suggestions are made for the advancement of fish vaccines.


Assuntos
Imunidade Adaptativa , Proteínas de Peixes/imunologia , Peixes/imunologia , Animais , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo , Vacinação/veterinária
8.
J Invertebr Pathol ; 123: 17-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218401

RESUMO

The study reports cloning, expression and characterization of immunogenic activity of VP24, a major envelope protein of White Spot Syndrome Virus (WSSV). His-tagged VP24 was expressed as truncated protein and purified from inclusion bodies by metal affinity chromatography under denaturing conditions. The ability to confer protection from WSSV by oral administration of recombinant viral protein (rVP24) was examined in black tiger shrimp Penaeus monodon (P. monodon) juveniles (advanced post larvae). Animals were fed with rVP24 for 10 days, orally challenged with WSSV and assayed for expression of viral genes and shrimp immune genes on the 2nd, 5th and 8th days of challenge. The survival of juvenile shrimps in the vaccinated and challenged group was significantly higher compared to the unvaccinated and challenged group with lesser viral gene expression (DNA polymerase, latency 1 and vp28). Analysis of immune gene expression showed upregulation of syntenin and down regulation of STAT, Rab 7 and caspase during the experimental period. This study points to the feasibility of using rVP24 as candidate vaccine in P. monodon against WSSV.


Assuntos
Penaeidae/virologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Western Blotting , Escherichia coli , Penaeidae/imunologia , Proteínas Recombinantes/imunologia , Vírus da Síndrome da Mancha Branca 1
9.
Environ Pollut ; 348: 123835, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521395

RESUMO

Plastic pollution, including micro- and nanoplastics, is a growing concern. Tyre-wear particles (TWPs) are the second largest source of microplastics in the ocean following abrasion of synthetic fibres. In addition to the particles themselves, TWPs contain many harmful chemicals, including 6PPD. This chemical reacts with atmospheric ozone and forms the toxic compound 6PPD-quinone (6PPDq), which poses a danger to aquatic life. There is a knowledge gap in understanding risks associated with the combined toxicity of nanoplastics (NPs) and 6PPDq. The present study aimed to investigate the toxicity of NPs and 6PPDq on adult zebrafish using phenotypic (behaviour, histology) and transcriptomic endpoints. Zebrafish were exposed to four treatments: control (contaminant-free), 50 µg/L 6PPDq, 3 mg/L polystyrene (PS)-NPs, and a combination of 50 µg/L 6PPDq and 3 mg/L PS-NPs. We did not observe locomotory dysregulation in zebrafish exposed to NPs. However, we found significant hyperlocomotion in zebrafish exposed to 6PPDq and this effect was even more substantial after co-exposure with PS-NPs. This study explores the molecular mechanisms behind these effects, identifying genes associated with neurotransmitters and fatty acid metabolism that were dysregulated by the co-exposure. Transcriptomic analysis further showed that both 6PPDq and PS-NPs impacted cellular processes associated with sterol biosynthesis, cholesterol metabolism, and muscle tissue development. The effects on these mechanisms were stronger in co-exposed zebrafish, indicating a heightened risk to cellular integrity and mitochondrial dysfunction. These results highlight the significance of mixture toxicity when studying the effects of NPs and associated chemicals like 6PPDq.


Assuntos
Benzoquinonas , Nanopartículas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/toxicidade , Quinonas , Poluentes Químicos da Água/toxicidade
10.
BMC Vet Res ; 9: 103, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23672475

RESUMO

BACKGROUND: Vibriosis caused by V. anguillarum is a commonly encountered disease in Atlantic cod farms and several studies indicate that the initiation of infection occurs after the attachment of the pathogen to the mucosal surfaces (gut, skin and gills) of fish. Therefore it is necessary to investigate the role of different mucosal components in fish upon V. anguillarum infection. The present study has two parts; in the first part we analyzed the differential expression of skin mucus proteins from Atlantic cod naturally infected with V. anguillarum using two dimensional gel electrophoresis coupled with mass spectrometry. In the second part, a separate bath challenge experiment with V. anguillarum was conducted to assess the mRNA levels of the genes in skin tissue, corresponding to the selected proteins identified in the first part. RESULTS: Comparative proteome analysis of skin mucus of cod upon natural infection with V. anguillarum revealed key immune relevant proteins like calpain small subunit 1, glutathione-S-transferase omega 1, proteasome 26S subunit, 14-kDa apolipoprotein, beta 2-tubulin, cold inducible RNA binding protein, malate dehydrogenase 2 (mitochondrial) and type II keratin that exhibited significant differential expression. Additionally a number of protein spots which showed large variability amongst individual fish were also identified. Some of the proteins identified were mapped to the immunologically relevant JNK (c-Jun N-terminal kinases) signalling pathway that is connected to cellular events associated with pathogenesis. A bath challenge experiment with V. anguillarum showed differential expression of beta 2-tubulin, calpain small subunit 1, cold inducible RNA binding protein, flotillin1, and glutathione S-transferase omega 1 transcripts in the skin tissue of cod during early stages of infection. CONCLUSIONS: Differentially expressed proteins identified in the cod skin mucus point towards their possible involvement in V. anguillarum pathogenesis. The role of some of these proteins in vibriosis in cod described in this paper can be considered unconventional with respect to their established functions in higher vertebrates. Based on the differential expression of these proteins they are possibly important components of fish defence against bacteria and innate immunity at large. The feasibility of utilizing these proteins/genes as markers of bacterial infection or stress in cod needs to be explored further.


Assuntos
Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Gadus morhua/microbiologia , Pele/microbiologia , Vibrioses/veterinária , Animais , Eletroforese em Gel Bidimensional/veterinária , Doenças dos Peixes/metabolismo , Proteínas de Peixes/biossíntese , Gadus morhua/metabolismo , Espectrometria de Massas/veterinária , Mucosa/metabolismo , Mucosa/microbiologia , Proteoma , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Pele/metabolismo , Vibrio , Vibrioses/metabolismo
11.
Sci Rep ; 13(1): 11686, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468554

RESUMO

Sustainable farming of fish species depends on emerging new feed ingredients, which can alter the features of the digestive tract and influence animals' overall health. Recent research has shown that functional feeds hold great potential for enhancing fish robustness by evoking appropriate responses at the intestine level. However, there is a lack of extensive and accurate descriptions of the morphology of the gastrointestinal tract of most farmed fish. We have characterised the intestine of European seabass thoroughly, by targeting four segments - anterior, mid, posterior and rectum. Results indicated that the anterior segment is mostly associated with absorption-related features; this segment has the largest absorptive area, the longest villi, and the highest number of neutral goblet cells (GC). The posterior segment and rectum have distinct histomorphometric features, but both seem to be important for immunity, displaying the highest count of acid GC and the highest expression of immune-related genes. The strongest proliferating cell nuclear antigen (PCNA) signal was observed in the anterior intestine and rectum, with PCNA+ cells appearing at the base of the villi and the corresponding villi branches. We have also evaluated the impact of a novel feed supplemented with a macro- and microalgae blend and found that there were no differences in terms of growth. However, the alterations observed in the mid intestine of fish fed the blend, such as thickening of the submucosa and lamina propria, an increased number of leucocytes, and higher expression of immune- and oxidative stress-related genes, suggest that algae may have an immunomodulatory effect. In the current article, we have described the morphology and expression patterns of the intestine segments of European seabass in detail and have presented a comprehensive report of the indices and methods used for the semi-quantitative and quantitative histomorphometric assessments, thereby providing useful information for future studies that aim to maintain intestinal health through dietary interventions.


Assuntos
Bass , Dieta , Animais , Antígeno Nuclear de Célula em Proliferação , Intestinos , Suplementos Nutricionais , Bass/genética , Ração Animal/análise
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(11): 159383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657755

RESUMO

Dyslipidemia is often associated with unhealthy dietary habits, and many mammalian studies have explored the mode of action of certain bioactive compounds such as ß-glucans and n-3 PUFAs to understand their potential to normalize the lipid metabolism. There are only a few investigations that adopted omic approaches to unveil their combined effect on hypercholesterolemia. Zebrafish (Danio rerio) was used as a model organism to reveal the efficacy of Schizochytrium oil and ß-glucans (from Euglena gracilis and Phaeodactylum tricornutum) against cholesterol-rich diet induced dyslipidemia. One of the folowing four diets was fed to a particular group of fish: a control high-cholesterol diet, a Schizochytrium oil diet or one of the two diets containing the oil and ß-glucan. The plasma HDL, expression of hepatic genes linked to, among others, ferric ion binding and plasma phosphatidylcholines were higher and plasma cholesterol esters and triacylglycerols were lower in the microbial oil-fed fish compared to the fish fed high cholesterol diet. While the fish fed a mix of microbial oil and Euglena ß-glucan had lower plasma triacylglycerols and expression of hepatic genes linked to PPAR signaling pathway and enriched biosynthesis of plasma unsaturated fatty acids, the fish fed microbial oil-Phaeodactylum ß-glucan combination had lower abundance of triacylglycerols rich in saturated and mono-unsaturated fatty acids and cholesterol esters in the plasma.

13.
Front Nutr ; 10: 1161119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435570

RESUMO

A Western diet elevates the circulating lipoprotein and triglyceride levels which are the major risk factors in cardiovascular disease (CVD) development. Consumption of long-chain omega-3 fatty acids can stall the disease progression. Although these fatty acids can significantly impact the intestine under a hypercholesterolemic condition, the associated changes have not been studied in detail. Therefore, we investigated the alterations in the intestinal transcriptome along with the deviations in the plasma lipids and liver histomorphology of zebrafish offered DHA- and EPA-rich oil. Fish were allocated to 4 dietary treatments: a control group, a high cholesterol group and microbial oil groups with low (3.3%) and high (6.6%) inclusion levels. We quantified the total cholesterol, lipoprotein and triglyceride levels in the plasma. In addition, we assessed the liver histology, intestinal transcriptome and plasma lipidomic profiles of the study groups. The results suggested that higher levels of dietary microbial oil could control the CVD risk factor indices in zebrafish plasma. Furthermore, microbial oil-fed fish had fewer liver vacuoles and higher mRNA levels of genes involved in ß-oxidation and HDL maturation. Analyses of the intestine transcriptome revealed that microbial oil supplementation could influence the expression of genes altered by a hypercholesterolemic diet. The plasma lipidomic profiles revealed that the higher level of microbial oil tested could elevate the long-chain poly-unsaturated fatty acid content of triglyceride species and lower the concentration of several lysophosphatidylcholine and diacylglycerol molecules. Our study provides insights into the effectiveness of microbial oil against dyslipidemia in zebrafish.

14.
Sci Total Environ ; 859(Pt 2): 160457, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36435242

RESUMO

Anthropogenic releases of plastics, persistent organic pollutants (POPs), and heavy metals can impact the environment, including aquatic ecosystems. Nanoplastics (NPs) have recently emerged as pervasive environmental pollutants that have the ability to adsorb POPs and can cause stress in organisms. Among POPs, DDT and its metabolites are ubiquitous environmental pollutants due to their long persistence. Despite the discontinued use of DDT in Europe, DDT and its metabolites (primarily p,p'-DDE) are still found at detectable levels in fish feed used in salmon aquaculture. Our study aimed to look at the individual and combined toxicity of NPs (50 mg/L polystyrene) and DDE (100 µg/L) using zebrafish larvae as a model. We found no significant morphological, cardiac, respiratory, or behavioural changes in zebrafish larvae exposed to NPs alone. Conversely, morphological, cardiac and respiratory alterations were observed in zebrafish larvae exposed to DDE and NPs + DDE. Interestingly, behavioural changes were only observed in zebrafish larvae exposed to NPs + DDE. These findings were supported by RNA-seq results, which showed that some cardiac, vascular, and immunogenic pathways were downregulated only in zebrafish larvae exposed to NPs + DDE. In summary, we found an enhanced toxicological impact of DDE when combined with NPs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Larva , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ecossistema , Poluentes Químicos da Água/metabolismo , Poluentes Ambientais/metabolismo
15.
Front Immunol ; 14: 1183701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275890

RESUMO

Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+ß-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal ß-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.


Assuntos
Peixe-Zebra , beta-Glucanas , Animais , Peixe-Zebra/metabolismo , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Intestinos , Inflamação , Glycine max , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
16.
Front Microbiol ; 14: 1232358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901806

RESUMO

Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and ß diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of ß diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.

17.
BMC Evol Biol ; 12: 256, 2012 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-23273344

RESUMO

BACKGROUND: Toll-like receptors (Tlrs) are major molecular pattern recognition receptors of the innate immune system. Atlantic cod (Gadus morhua) is the first vertebrate known to have lost most of the mammalian Tlr orthologues, particularly all bacterial recognising and other cell surface Tlrs. On the other hand, its genome encodes a unique repertoire of teleost-specific Tlrs. The aim of this study was to investigate if these duplicate Tlrs have been retained through adaptive evolution to compensate for the lack of other cell surface Tlrs in the cod genome. RESULTS: In this study, one tlr21, 12 tlr22 and two tlr23 genes representing the teleost-specific Tlr family have been cloned and characterised in cod. Phylogenetic analysis grouped all tlr22 genes under a single clade, indicating that the multiple cod paralogues have arisen through lineage-specific duplications. All tlrs examined were transcribed in immune-related tissues as well as in stomach, gut and gonads of adult cod and were differentially expressed during early development. These tlrs were also differentially regulated following immune challenge by immersion with Vibrio anguillarum, indicating their role in the immune response. An increase in water temperature from 4 to 12°C was associated with a 5.5-fold down-regulation of tlr22d transcript levels in spleen. Maximum likelihood analysis with different evolution models revealed that tlr22 genes are under positive selection. A total of 24 codons were found to be positively selected, of which 19 are in the ligand binding region of ectodomain. CONCLUSION: Positive selection pressure coupled with experimental evidence of differential expression strongly support the hypothesis that teleost-specific tlr paralogues in cod are undergoing neofunctionalisation and can recognise bacterial pathogen-associated molecular patterns to compensate for the lack of other cell surface Tlrs.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/genética , Variação Genética , Receptores Toll-Like/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Evolução Molecular , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/classificação , Gadus morhua/microbiologia , Perfilação da Expressão Gênica , Brânquias/metabolismo , Brânquias/microbiologia , Rim Cefálico/metabolismo , Rim Cefálico/microbiologia , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seleção Genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura , Receptores Toll-Like/química , Receptores Toll-Like/classificação , Vibrio/fisiologia
18.
Fish Shellfish Immunol ; 32(3): 396-406, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178249

RESUMO

The piscidin (pis) family of potent antimicrobial peptides with broad-spectrum activity has an important role in innate host defence. We have identified and characterized two pis paralogues in Atlantic cod (pis1 and pis2), as well as a novel splice variant of pis2, termed pis2-ß. Pis1 and pis2 genes have most likely originated from a recent duplication event, since they share the same four-exon structure with up to 91% identity at the intron level. The alternative transcript pis2-ß is derived from intron retention and even if not translated it may regulate pis expression through nonsense mediated decay. In spite of their overall conservation, pis genes are being shaped by positive selection and pis1, pis2 and pis2-ß code for structurally diverse mature peptides, which have different functional properties. Synthetic Pis1 displays antibacterial activity in the micromolar range against Gram-(+) and Gram-(-) bacteria, including the fish pathogens Vibrio anguillarum and Yersinia ruckeri. In contrast, synthetic Pis2 and Pis2-ß have limited or no antibacterial activity, respectively, but exhibit more potent antiparasitic activity against Tetrahymena pyriformis. In adult cod, pis1 and pis2-ß are constitutively expressed in immune-related organs, whereas pis2 is constitutively expressed in all tissues examined. Differential expression is also observed during embryonic development. In particular, pis2 and pis2-ß are maternally inherited but pis1 transcripts are only present from gastrulation onwards. It was found that antigenic challenge with attenuated V. anguillarum induces a general down-regulation of all pis in head kidney, spleen and distal intestine, suggesting that they may be used as health indicators. Taken together, our data indicate that pis is an important component of the cod innate immune system. Moreover, the two pis paralogues have undergone structural diversification and it is likely that they play multifunctional roles in Atlantic cod.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/metabolismo , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiparasitários/farmacologia , Bactérias/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Gadus morhua/classificação , Perfilação da Expressão Gênica , Ordem dos Genes , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Vibrioses/imunologia
19.
Fish Shellfish Immunol ; 33(3): 626-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22771966

RESUMO

Immunomodulatory feed additives are expected to exert their primary influence at the intestinal level through the expression of cytokines, which in turn affect the immune responses in fish. In two separate experiments a yeast-derived mannan oligosaccharide product (YM) or a purified ß-glucan (BG) product were fed to Atlantic cod (Gadus morhua L.) for 5 weeks, after which they were bath-challenged with a bacterial pathogen--Vibrio anguillarum. The transcription of selected cytokines (proinflammatory--il1b, il8, ifng; anti-inflammatory--il10) in different intestinal segments was analysed using qPCR. In the case of YM study, the effect of the compound was observed in both the posterior intestine and rectum of Atlantic cod, upon challenge with the pathogen. iIl1b expression in the posterior intestine and rectum of post-challenge fish was significantly higher than that of pre-challenge fish. In the case of il8 the difference was confined to rectum. The expression of ifng was altered only in the anterior intestine upon YM feeding. In the BG trial, the additive had a differential effect on the expression of the cytokine genes. In anterior intestine and rectum, the purified ß-glucan additive significantly elevated the expression of il1b when challenged with V. anguillarum. An effect of BG on the anti-inflammatory cytokine il10 was visible in the rectum after the pathogen challenge. The differential responses of cytokines in the intestine of fish upon exposure to V. anguillarum suggest that both mannan oligosaccharides and ß-glucans impact the ability of Atlantic cod to respond to the pathogen.


Assuntos
Proteínas de Peixes/imunologia , Gadus morhua/imunologia , Interferon gama/metabolismo , Interleucinas/metabolismo , Vibrio/imunologia , Animais , Aquicultura , Suplementos Nutricionais/análise , Proteínas de Peixes/metabolismo , Gadus morhua/metabolismo , Gadus morhua/microbiologia , Regulação da Expressão Gênica , Imunidade Inata , Intestinos/imunologia , Mananas/administração & dosagem , Oligossacarídeos/administração & dosagem , Distribuição Aleatória , Reto/imunologia , Saccharomyces cerevisiae , beta-Glucanas/administração & dosagem
20.
Mol Biol Rep ; 39(9): 8965-75, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729906

RESUMO

Toll-like receptors (TLRs) play a crucial role in host defence, since they trigger immune response following recognition of pathogen-associated molecular patterns (PAMPs) in potential infectious agents. TLRs have been found in numerous organisms, including mammals, birds and teleosts. Some TLR members are commonly retained across all species, whilst others were lost, gained or diverged independently during evolution. Our knowledge about the evolution and specific functions of tlr21, tlr22 and tlr23 in teleosts are still scarce. Phylogenetic analysis of 18 tlr13, tlr21, tlr22 and tlr23 genes from 9 different fish species divided them in two groups. All tlr21 genes were under the first clade, while the second comprised tlr22, tlr23 and tlr13 from Atlantic salmon. Evidence of positive selection was detected at three sites within the leucine-rich repeat regions of Tlr22, which may influence PAMP recognition. Immunostimulation experiments revealed that expression of zebrafish tlr22 is modulated by several unrelated PAMPs. Up to a 3-fold increase in tlr21 and tlr22 expression was detected in larvae exposed to immunostimulants such as lipopolysaccharide, peptidoglycan or poly I:C. We found that zebrafish tlrs are expressed mainly in immune-related organs, such as spleen and kidney as well as in testis and temperature stress did not have an effect on the expression of tlr21 and tlr22 in the early stages of development in zebrafish larvae. Our data indicates that these teleost tlrs may play a role in innate host defence. In particular, tlr22 is evolving under positive selection, which indicates functional diversification and adaptation of the response to different PAMPs.


Assuntos
Seleção Genética , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia , Receptores Toll-Like/genética , Peixe-Zebra/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Evolução Molecular , Feminino , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Conformação Proteica , Alinhamento de Sequência , Temperatura , Receptores Toll-Like/química , Receptores Toll-Like/classificação , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA