Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(4): 935-942, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420956

RESUMO

Climate warming can reduce global soil carbon stocks by enhancing microbial decomposition. However, the magnitude of this loss remains uncertain because the temperature sensitivity of the decomposition of the major fraction of soil carbon, namely resistant carbon, is not fully known. It is now believed that the resistance of soil carbon mostly depends on microbial accessibility of soil carbon with physical protection being the primary control of the decomposition of protected carbon, which is insensitive to temperature changes. However, it is still unclear whether the temperature sensitivity of the decomposition of unprotected carbon, for example, carbon that is not protected by the soil mineral matrix, may depend on the chemical recalcitrance of carbon compounds. In particular, the carbon-quality temperature (CQT) hypothesis asserts that recalcitrant low-quality carbon is more temperature-sensitive to decomposition than labile high-quality carbon. If the hypothesis is correct, climate warming could amplify the loss of unprotected, but chemically recalcitrant, carbon and the resultant CO2 release from soils to the atmosphere. Previous research has supported this hypothesis based on reported negative relationships between temperature sensitivity and carbon quality, defined as the decomposition rate at a reference temperature. Here we show that negative relationships can arise simply from the arbitrary choice of reference temperature, inherently invalidating those tests. To avoid this artefact, we defined the carbon quality of different compounds as their uncatalysed reaction rates in the absence of enzymes. Taking the uncatalysed rate as the carbon quality index, we found that the CQT hypothesis is not supported for enzyme-catalysed reactions, which showed no relationship between carbon quality and temperature sensitivity. The lack of correlation in enzyme-catalysed reactions implies similar temperature sensitivity for microbial decomposition of soil carbon, regardless of its quality, thereby allaying concerns of acceleration of warming-induced decomposition of recalcitrant carbon.


Assuntos
Artefatos , Carbono , Temperatura , Carbono/química , Microbiologia do Solo , Solo/química
2.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315565

RESUMO

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Assuntos
Dióxido de Carbono , Ecossistema , Austrália , Ciclo do Carbono , Mudança Climática
3.
Glob Chang Biol ; 27(4): 904-928, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159712

RESUMO

Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , França , Federação Russa , Suécia , Incerteza , Reino Unido
4.
N Z J For Sci ; 51: 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36091929

RESUMO

Background: Some of New Zealand's exotic pine (Pinus radiata D.Don) forests were planted for erosion mitigation but cultural, legislative, environmental, and profitability limitations in some parts of the landscape have led to reassessment of their suitability. There is limited information to support landowner decisions on the viability of natural regeneration of native forest post-pine-harvest. Methods: We evaluated scenarios of post-harvest natural regeneration, compared to remaining in pine production, using erosion susceptibility determined from historical occurrence of landslides, gullies and earthflows, biophysical growth modelling of manuka-kanuka (Leptospermum scoparium-Kunzea ericoides (A.Rich) Joy Thomps.) shrubland using the process-based CenW model, and cost-benefit analyses using NZFARM with two land use change scenarios, at two levels of erosion mitigation ± honey profits. Results: In our study area, the Gisborne Region (North Island of New Zealand), ~27% of the land has moderate-very high susceptibility to landslides, 14-22% a high probability of contributing material to waterways, and 19% moderate-very high gully erosion susceptibility. Pines grow 10 times faster than naturally regenerating manuka-kanuka shrubland, but manuka-kanuka is used for honey not wood production. Natural regeneration resulted in losses of $150-250 ha-1 yr-1 compared to the current profitability of pine production. Honey production offset some reduction in pine revenue, but not fully. Thus, the viability of shifting from pines to native forest is highly dependent on landowner impetus and value for non-market ecosystem services (such as cultural and biodiversity values) provided by native forest. Conclusions: A mosaic of land uses within a property may sufficiently offset income losses with other benefits, whereby highly erosion-prone land is shifted from rotational pine forest production to permanent native forest cover with honey production where possible. At the regional scale in Gisborne, the conversion of the most highly susceptible land under production forestry (315-556 ha) to natural regeneration has the potential for wider benefits for soil conservation reducing erosion by 1-2.5 t yr-1 of sediment facilitating achievement of cleaner water aspirations and habitat provision.

5.
Glob Chang Biol ; 24(2): e603-e616, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080301

RESUMO

Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2 O emissions. Yield-scaled N2 O emissions (N2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N2 O emissions at field scale is discussed.


Assuntos
Agricultura/métodos , Produtos Agrícolas/fisiologia , Modelos Biológicos , Óxido Nitroso/metabolismo , Simulação por Computador , Abastecimento de Alimentos , Incerteza
8.
Glob Chang Biol ; 21(8): 2844-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25891785

RESUMO

Future human well-being under climate change depends on the ongoing delivery of food, fibre and wood from the land-based primary sector. The ability to deliver these provisioning services depends on soil-based ecosystem services (e.g. carbon, nutrient and water cycling and storage), yet we lack an in-depth understanding of the likely response of soil-based ecosystem services to climate change. We review the current knowledge on this topic for temperate ecosystems, focusing on mechanisms that are likely to underpin differences in climate change responses between four primary sector systems: cropping, intensive grazing, extensive grazing and plantation forestry. We then illustrate how our findings can be applied to assess service delivery under climate change in a specific region, using New Zealand as an example system. Differences in the climate change responses of carbon and nutrient-related services between systems will largely be driven by whether they are reliant on externally added or internally cycled nutrients, the extent to which plant communities could influence responses, and variation in vulnerability to erosion. The ability of soils to regulate water under climate change will mostly be driven by changes in rainfall, but can be influenced by different primary sector systems' vulnerability to soil water repellency and differences in evapotranspiration rates. These changes in regulating services resulted in different potentials for increased biomass production across systems, with intensively managed systems being the most likely to benefit from climate change. Quantitative prediction of net effects of climate change on soil ecosystem services remains a challenge, in part due to knowledge gaps, but also due to the complex interactions between different aspects of climate change. Despite this challenge, it is critical to gain the information required to make such predictions as robust as possible given the fundamental role of soils in supporting human well-being.


Assuntos
Mudança Climática , Solo , Ecossistema , Nova Zelândia
9.
J Environ Manage ; 95(1): 124-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22115517

RESUMO

The tradeoffs between the regulation of soil erosion, provision of fresh water, and climate regulation associated with new Pinus radiata forests in New Zealand are explored using national models. These three ecosystem services for which there is strong demand are monetised as commodities (avoided soil erosion is NZ $1 per tonne; water is NZ $1 per cubic metre; and sequestered carbon is assumed to be NZ $73 per tonne). This permits their summation on a spatial basis to produce a national map of the net benefit of these ecosystem services. Net benefit is spatially variable depending primarily on the relative mix of forest growth rates and demand for irrigation water. New P. radiata forests (once mature) generally reduce mass-movement erosion by an order of magnitude. This provides significant benefits for erosion control where there are high natural rates of erosion. Benefits are especially large in catchments where high sedimentation is increasing flood risk and degrading aquatic ecosystems. The generally high growth rates of P. radiata in New Zealand (8.5 tonnesCha(-1)yr(-1) on average for existing forest) add significant environmental benefits of carbon sinks to climate regulation. However, the reduction of water yield associated with new forests (between 30% and 50%) can neutralise these benefits in catchments where there is demand for irrigation water, such as the eastern foothills of the Southern Alps and the tussock grasslands in the South Island.


Assuntos
Ciclo do Carbono , Ecossistema , Modelos Biológicos , Modelos Econômicos , Ciclo Hidrológico , Agricultura Florestal , Nova Zelândia , Pinus/fisiologia , Solo
10.
Ecol Lett ; 14(5): 493-502, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21395963

RESUMO

Understanding the factors that drive soil carbon (C) accumulation is of fundamental importance given their potential to mitigate climate change. Much research has focused on the relationship between plant traits and C sequestration, but no studies to date have quantitatively considered traits of their mycorrhizal symbionts. Here, we use a modelling approach to assess the contribution of an important mycorrhizal fungal trait, organic nutrient uptake, to soil C accumulation. We show that organic nutrient uptake can significantly increase soil C storage, and that it has a greater effect under nutrient-limited conditions. The main mechanism behind this was an increase in plant C fixation and subsequent increased C inputs to soil through mycorrhizal fungi. Reduced decomposition due to increased nutrient limitation of saprotrophs also played a role. Our results indicate that direct uptake of nutrients from organic pools by mycorrhizal fungi could have a significant effect on ecosystem C cycling and storage.


Assuntos
Carbono/metabolismo , Ecossistema , Modelos Biológicos , Micorrizas/metabolismo , Mudança Climática , Solo/química
11.
Sci Total Environ ; 772: 145033, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578142

RESUMO

Previous soil sampling from grazed pastures in New Zealand compared the changes of soil organic carbon (SOC) in adjacent irrigated and unirrigated portions of the same paddocks. It showed that irrigated portions had lower SOC stocks than unirrigated portions, with an average difference of 7.0 tC ha-1 or 0.6 tC ha-1 yr-1. These findings have formed the basis of an assessment for the net effect of conversion of New Zealand's grazed pastures to irrigation. However, since cattle could move freely between irrigated and unirrigated portions of the studied paddocks, there could have been different grazing intensities and/or excreta transfer between the irrigated and unirrigated portions of the same paddocks. Both these factors could have affected SOC stocks. In this study, we used the process-based model, CenW, to simulate the consequences of this possible carbon transfer via animal excreta and different grazing intensities. We found that the observed increase of 0.6 tC ha-1 yr-1 in SOC stock in the unirrigated portions could result from a transfer of 20% excreta from the irrigated to unirrigated portions (with an area ratio of 6:1) of a paddock and with the unirrigated portions being grazed only lightly with 2.0 tDM ha-1 in foliage biomass residuals remaining after grazing. That means that the observed higher SOC stocks in the unirrigated portions could potentially be attributable to the behaviour of grazing animals. We suggest that a realistic extent of carbon transfer and/or differences in grazing intensities could be sufficient to account for the observed differences in SOC stocks even if irrigation per se caused no differences in carbon stocks. It is therefore inappropriate to ascribe the change of SOC to irrigation effects based on experimental findings where SOC changes can be affected by the behaviour of grazing animals.


Assuntos
Carbono , Solo , Animais , Comportamento Animal , Biomassa , Carbono/análise , Bovinos , Nova Zelândia
12.
Front Plant Sci ; 11: 628995, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519882

RESUMO

Plant leaf respiration is one of the critical components of the carbon cycle in terrestrial ecosystems. To predict changes of carbon emissions from leaves to the atmosphere under a warming climate, it is, therefore, important to understand the thermodynamics of the temperature response of leaf respiration. In this study, we measured the short-term temperature response of leaf respiration from five different urban tree species in a subtropical region of southern China. We applied two models, including an empirical model (the Kavanau model) and a mechanistic model (Macromolecular Rate Theory, MMRT), to investigate the thermodynamic properties in different plant species. Both models are equivalent in fitting measurements of the temperature response of leaf respiration with no significant difference (p = 0.67) in model efficiency, while MMRT provides an easy way to determine the thermodynamic properties, i.e., enthalpy, entropy, and Gibbs free energy of activation, for plant respiration. We found a conserved temperature response in the five studied plant species, showing no difference in thermodynamic properties and the relative temperature sensitivity for different species at low temperatures (<42°C). However, divergent temperature response among species happened at high temperatures over 42°C, showing more than two-fold differences in relative respiration rate compared to that below 42°C, although the causes of the divergent temperature response remain unclear. Notably, the convergent temperature response at low temperatures could provide useful information for land surface models to improve predictions of climate change effects on plant respiration.

13.
Sci Total Environ ; 745: 140917, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32726704

RESUMO

Many temperate grasslands are used for dairying, and ongoing research aims to better understand these systems in order to increase animal production and soil organic carbon (SOC) stocks. However, it is difficult to fully understand management effects on SOC because most changes are slow and difficult to distinguish from natural variability, even if changes are important over years to decades. Eddy covariance (EC) measurements can overcome this problem by continuously measuring net carbon exchange from pastures, but net balances are very sensitive to even small systematic measurement errors. Combining EC measurements with detailed process-based modelling can reduce the risks inherent in total reliance on EC measurements. Modelling can also reveal information about the underlying processes that drive observed fluxes. Here, we describe carbon exchange patterns of five paddocks situated at four different locations in New Zealand and France where EC data and detailed physiological modelling were available. The work showed that respiration by grazing animals was often only incompletely captured in EC measurements. This was most problematic when fluxes were based on gap-filling, which could have estimated incorrect fluxes during grazing periods based on observations from periods without grazing. We then aimed to extract plant physiological insights from these studies. We found appreciable carbon uptake rates even at temperatures below 0 °C. After grazing, carbon uptake was reduced for up to 2 weeks. This reduction was larger than expected from reduced leaf area after grazing, but the factors contributing to that difference have not yet been identified. Detailed physiological models can also extrapolate findings to new management regimes, environmental conditions or plant attributes. This overcomes the limitation of experimental studies, which are necessarily restricted to actual site and weather conditions allowing models to make further progress on predicting management effects on SOC.

14.
Sci Total Environ ; 715: 136917, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041047

RESUMO

In New Zealand, pasture renewal is a routine management method for maintaining pasture productivity. However, knowledge of the renewal effects on soil organic carbon (SOC) stocks is still limited. Here we use a process-based model, CenW, to comprehensively assess the effects of pasture renewal on the carbon balance of a temperate pasture in the Waikato region of New Zealand. We investigated the effects of renewal frequency, length of fallow period, renewal timing, and the importance and quantification of age-related reductions in productivity. Our results suggest that SOC change depends on the combined effects of renewal on gross primary productivity (GPP), autotrophic and heterotrophic respiration, carbon removal by grazing and carbon allocation to roots. Pasture renewal reduces grazing removal proportionately more than GPP because newly established plants need to allocate more carbon to re-build their root system following renewal which limits foliage production. That lengthens the time before above-ground biomass has grown sufficiently to be grazed again. New plants have a lower ratio of autotrophic respiration to GPP, however, which partly compensates for the GPP loss during renewal. Our simulations suggested an average SOC loss of 0.16 tC ha-1 yr-1 if pastures were renewed every 25 years, but could gain an average of 0.3 tC ha-1 yr-1 if pastures were renewed every year. For maximizing pasture production, the optimal renewal frequency depends on the rate of pasture deterioration with more rapid deterioration rates favouring more frequent renewal. Additionally, the length of the fallow period, renewal timing, and associated environmental conditions are important factors that can affect SOC temporally, but the importance of those effects diminishes at the annual or longer time scales. A major uncertainty for a full understanding of the renewal effect on SOC lies in the rate of pasture deterioration with time since previous renewal.

15.
Tree Physiol ; 29(9): 1081-93, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19617592

RESUMO

We conducted a comprehensive modelling study to estimate future stem wood production and net ecosystem production (NEP) of Pinus radiata D. Don plantations in south-western Australia, a region that is predicted to undergo severe rainfall reduction in future decades. The process-based model CenW was applied to four locations where it had previously been tested. Climate change scenarios under four emission scenarios for the period from 2005 to 2066 were considered, in addition to simulations under the current climate. Results showed that stem wood production and NEP were little affected by moderate climate change. However, under the most pessimistic climate change scenario (Special Report on Emission Scenarios A2), stem wood production and NEP decreased strongly. These results could be explained by the trade-off between the positive effect of rising atmospheric CO(2) on plant water use efficiency and the negative effects of decreasing rainfall and increasing temperatures. Because changes in heterotrophic respiration (R(H)) lagged behind changes in plant growth, and because R(H) rates were increased by higher temperatures, NEP was more negatively affected than stem wood production. Stem wood production and NEP also strongly interacted with location, with the site currently having the wettest climate being least affected by climatic change. These results suggest that realistic predictions of forest production and carbon sequestration potential in the context of climate change require (1) the use of modelling tools that describe the important feedbacks between environmental variables, plant physiology and soil organic matter decomposition, (2) consideration of a range of climate change scenarios and (3) simulations that account for a gradual climate change to capture transient effects.


Assuntos
Carbono/metabolismo , Mudança Climática , Pinus/metabolismo , Austrália , Dióxido de Carbono/metabolismo , Modelos Teóricos , Pinus/crescimento & desenvolvimento , Chuva , Temperatura , Água/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
17.
Sci Total Environ ; 577: 61-72, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27751689

RESUMO

A possible agricultural climate change mitigation option is to increase the amount of soil organic carbon (SOC). Conversely, some factors might lead to inadvertent losses of SOC. Here, we explore the effect of various management options and environmental changes on SOC storage and milk production of dairy pastures in New Zealand. We used CenW 4.1, a process-based ecophysiological model, to run a range of scenarios to assess the effects of changes in management options, plant properties and environmental factors on SOC and milk production. We tested the model by using 2years of observations of the exchanges of water and CO2 measured with an eddy covariance system on a dairy farm in New Zealand's Waikato region. We obtained excellent agreement between the model and observations, especially for evapotranspiration and net photosynthesis. For the scenario analysis, we found that SOC could be increased through supplying supplemental feed, increasing fertiliser application, or increasing water availability through irrigation on very dry sites, but SOC decreased again for larger increases in water availability. Soil warming strongly reduced SOC. For other changes in key properties, such as changes in soil water-holding capacity and plant root:shoot ratios, SOC changes were often negatively correlated with changes in milk production. The work showed that changes in SOC were determined by the complex interplay between (1) changes in net primary production; (2) the carbon fraction taken off-site through grazing; (3) carbon allocation within the system between labile and stabilised SOC; and (4) changes in SOC decomposition rates. There is a particularly important trade-off between carbon either being removed by grazing or remaining on site and available for SOC formation. Changes in SOC cannot be fully understood unless all four factors are considered together in an overall assessment.


Assuntos
Sequestro de Carbono , Carbono , Indústria de Laticínios , Leite , Animais , Mudança Climática , Nova Zelândia , Solo/química
18.
PLoS One ; 11(6): e0157017, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27284995

RESUMO

This study aimed to develop and test an unbiased and rapid methodology to estimate the length of external arbuscular mycorrhizal fungal (AMF) hyphae in soil. The traditional visual gridline intersection (VGI) method, which consists in a direct visual examination of the intersections of hyphae with gridlines on a microscope eyepiece after aqueous extraction, membrane-filtration, and staining (e.g., with trypan blue), was refined. For this, (i) images of the stained hyphae were taken by using a digital photomicrography technique to avoid the use of the microscope and the method was referred to as "digital gridline intersection" (DGI) method; and (ii), the images taken in (i) were processed and the hyphal length was measured by using ImageJ software, referred to as the "photomicrography-ImageJ processing" (PIP) method. The DGI and PIP methods were tested using known grade lengths of possum fur. Then they were applied to measure the hyphal lengths in soils with contrasting phosphorus (P) fertility status. Linear regressions were obtained between the known lengths (Lknown) of possum fur and the values determined by using either the DGI (LDGI) (LDGI = 0.37 + 0.97 × Lknown, r2 = 0.86) or PIP (LPIP) methods (LPIP = 0.33 + 1.01 × Lknown, r2 = 0.98). There were no significant (P > 0.05) differences between the LDGI and LPIP values. While both methods provided accurate estimation (slope of regression being 1.0), the PIP method was more precise, as reflected by a higher value of r2 and lower coefficients of variation. The average hyphal lengths (6.5-19.4 m g-1) obtained by the use of these methods were in the range of those typically reported in the literature (3-30 m g-1). Roots growing in P-deficient soil developed 2.5 times as many hyphae as roots growing in P-rich soil (17.4 vs 7.2 m g-1). These tests confirmed that the use of digital photomicrography in conjunction with either the grid-line intersection principle or image processing is a suitable method for the measurement of AMF hyphal lengths in soils for comparative investigations.


Assuntos
Hifas/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Micorrizas/crescimento & desenvolvimento , Fotomicrografia/métodos , Animais , Calibragem , Cabelo/microbiologia , Processamento de Imagem Assistida por Computador/normas , Fotomicrografia/normas , Raízes de Plantas/microbiologia , Processamento de Sinais Assistido por Computador , Solo , Microbiologia do Solo/normas , Estatística como Assunto/métodos , Estatística como Assunto/normas , Trichosurus/microbiologia
19.
Tree Physiol ; 25(7): 953-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15870061

RESUMO

Typically, forests have rotations of 10-200 years. On that time scale, anthropogenic increases in atmospheric carbon dioxide concentration ([CO2]) and the associated changes in climate are expected to be substantial. These changes will, therefore, almost certainly affect the growth of presently established forest stands. Most studies on the effects of increasing [CO2] on tree growth have been made with young plants. However, the growth of trees within a forest stand varies with age. As a consequence, it is difficult to infer from the available experimental data how rising [CO2] will affect forest productivity over a full rotation. In this study, various mechanisms that may account for the slowing of forest growth with age were introduced into the forest growth model CenW, to assess how these processes affect the modeled growth response to increasing [CO2]. Inclusion of allocation shifts with tree height, individual tree mortality, changing respiration load and nutrient dynamics or age-based reductions in photosynthetic capacity had only small effects on the response to increasing [CO2]. However, when photosynthesis of mature trees was decreased as a function of size, then the growth response to increasing [CO2] was reduced because, at the same age, trees were larger in elevated than in ambient [CO2]. No simple and generally valid interactions between increasing [CO2] and forest age were identified because of the large number of interacting processes, all of which are incompletely understood. Important age x climate change interactions on productivity must occur in real forests and need to be considered to understand likely future trends. However, these interactions are complex and difficult to test. It is therefore not yet possible to predict with confidence the modification of the CO2 response by forest age.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Efeito Estufa , Modelos Biológicos , Árvores/fisiologia , Simulação por Computador , Fotossíntese , Densidade Demográfica , Árvores/anatomia & histologia , Árvores/metabolismo
20.
Funct Plant Biol ; 42(10): 989-1000, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480738

RESUMO

Many short-term experiments have been conducted under increasing CO2 but results have been varied and have not yet led to a conclusive quantitative understanding of the CO2 response of plant growth. This may have been partly due to a lack of explicit consideration of the positive feedback inherent in plant growth during periods of exponential growth. This feedback can increase an initial physiological enhancement of relative growth rate (RGR) into a much larger biomass enhancement. To overcome this problem, we re-analysed existing experimental data from 78 publications. We calculated the RGRs of C3 plants and their relative enhancement under elevated CO2 and derived response indices that were independent of the duration of experiments and the RGR at normal atmospheric CO2. The RGR of unstressed plants increased by 14±2% under doubled CO2, with observed RGR enhancement linearly correlated with calculated photosynthetic enhancements (based on the Farquhar-von Caemmerer-Berry photosynthesis model), but at only half their numeric values. Calculated RGR enhancements did not change significantly for temperatures from 12 to 40°C, but were reduced under nutrient limitation, and were increased under water stress or low irradiance. We concluded that short-term experiments can offer simple and cost-effective insights into plant CO2 responses, provided they are analysed by calculating relative changes in RGR during the strictly exponential initial growth phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA