Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell ; 165(6): 1440-1453, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259151

RESUMO

Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Biocatálise , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Ubiquitinação
2.
Cell ; 161(5): 1187-1201, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000487

RESUMO

It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT.


Assuntos
Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica/métodos , Técnicas Analíticas Microfluídicas , Análise de Célula Única/métodos , Animais , Células-Tronco Embrionárias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Análise de Sequência de RNA/métodos
3.
Cell ; 159(4): 844-56, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417160

RESUMO

Wnt signaling plays a critical role in embryonic development, and genetic aberrations in this network have been broadly implicated in colorectal cancer. We find that the Wnt receptor Frizzled2 (Fzd2) and its ligands Wnt5a/b are elevated in metastatic liver, lung, colon, and breast cancer cell lines and in high-grade tumors and that their expression correlates with markers of epithelial-mesenchymal transition (EMT). Pharmacologic and genetic perturbations reveal that Fzd2 drives EMT and cell migration through a previously unrecognized, noncanonical pathway that includes Fyn and Stat3. A gene signature regulated by this pathway predicts metastasis and overall survival in patients. We have developed an antibody to Fzd2 that reduces cell migration and invasion and inhibits tumor growth and metastasis in xenografts. We propose that targeting this pathway could provide benefit for patients with tumors expressing high levels of Fzd2 and Wnt5a/b.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Receptores Frizzled/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos Nus , Metástase Neoplásica/patologia , Transplante de Neoplasias , Fator de Transcrição STAT3/metabolismo , Proteínas Wnt/metabolismo
4.
Cell ; 152(5): 1160-72, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452859

RESUMO

Ubiquitin and ubiquitin-like (Ubl) protein modifications affect protein stability, activity, and localization, but we still lack broad understanding of the functions of Ubl modifications. We have profiled the protein targets of ubiquitin and six additional Ubls in mitosis using a functional assay that utilizes active mammalian cell extracts and protein microarrays and identified 1,500 potential substrates; 80-200 protein targets were exclusive to each Ubl. The network structure is nonrandom, with most targets mapping to a single Ubl. There are distinct molecular functions for each Ubl, suggesting divergent biological roles. Analysis of differential profiles between mitosis and G1 highlighted a previously underappreciated role for the Ubl, FAT10, in mitotic regulation. In addition to its role as a resource for Ubl modifications, our study provides a systematic approach to analyze changes in posttranslational modifications at various cellular states.


Assuntos
Mitose , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteoma/análise , Humanos , Redes e Vias Metabólicas , Proteínas/química , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
5.
Mol Cell ; 77(6): 1294-1306.e5, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32023483

RESUMO

von Hippel-Lindau (VHL) is a critical tumor suppressor in clear cell renal cell carcinomas (ccRCCs). It is important to identify additional therapeutic targets in ccRCC downstream of VHL loss besides hypoxia-inducible factor 2α (HIF2α). By performing a genome-wide screen, we identified Scm-like with four malignant brain tumor domains 1 (SFMBT1) as a candidate pVHL target. SFMBT1 was considered to be a transcriptional repressor but its role in cancer remains unclear. ccRCC patients with VHL loss-of-function mutations displayed elevated SFMBT1 protein levels. SFMBT1 hydroxylation on Proline residue 651 by EglN1 mediated its ubiquitination and degradation governed by pVHL. Depletion of SFMBT1 abolished ccRCC cell proliferation in vitro and inhibited orthotopic tumor growth in vivo. Integrated analyses of ChIP-seq, RNA-seq, and patient prognosis identified sphingosine kinase 1 (SPHK1) as a key SFMBT1 target gene contributing to its oncogenic phenotype. Therefore, the pVHL-SFMBT1-SPHK1 axis serves as a potential therapeutic avenue for ccRCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prognóstico , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Proteínas Repressoras/genética , Células Tumorais Cultivadas , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS Biol ; 22(1): e3002453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180950

RESUMO

To achieve a stable size distribution over multiple generations, proliferating cells require a means of counteracting stochastic noise in the rate of growth, the time spent in various phases of the cell cycle, and the imprecision in the placement of the plane of cell division. In the most widely accepted model, cell size is thought to be regulated at the G1/S transition, such that cells smaller than a critical size pause at the end of G1 phase until they have accumulated mass to a predetermined size threshold, at which point the cells proceed through the rest of the cell cycle. However, a model, based solely on a specific size checkpoint at G1/S, cannot readily explain why cells with deficient G1/S control mechanisms are still able to maintain a very stable cell size distribution. Furthermore, such a model would not easily account for stochastic variation in cell size during the subsequent phases of the cell cycle, which cannot be anticipated at G1/S. To address such questions, we applied computationally enhanced quantitative phase microscopy (ceQPM) to populations of cultured human cell lines, which enables highly accurate measurement of cell dry mass of individual cells throughout the cell cycle. From these measurements, we have evaluated the factors that contribute to maintaining cell mass homeostasis at any point in the cell cycle. Our findings reveal that cell mass homeostasis is accurately maintained, despite disruptions to the normal G1/S machinery or perturbations in the rate of cell growth. Control of cell mass is generally not confined to regulation of the G1 length. Instead mass homeostasis is imposed throughout the cell cycle. In the cell lines examined, we find that the coefficient of variation (CV) in dry mass of cells in the population begins to decline well before the G1/S transition and continues to decline throughout S and G2 phases. Among the different cell types tested, the detailed response of cell growth rate to cell mass differs. However, in general, when it falls below that for exponential growth, the natural increase in the CV of cell mass is effectively constrained. We find that both mass-dependent cell cycle regulation and mass-dependent growth rate modulation contribute to reducing cell mass variation within the population. Through the interplay and coordination of these 2 processes, accurate cell mass homeostasis emerges. Such findings reveal previously unappreciated and very general principles of cell size control in proliferating cells. These same regulatory processes might also be operative in terminally differentiated cells. Further quantitative dynamical studies should lead to a better understanding of the underlying molecular mechanisms of cell size control.


Assuntos
Ciclo Celular , Humanos , Divisão Celular , Tamanho Celular , Proliferação de Células , Homeostase
7.
Mol Cell ; 67(2): 322-333.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28689658

RESUMO

The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.


Assuntos
Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Proto-Oncogênicas/ultraestrutura , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Transfecção
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197279

RESUMO

Axin is one of two essential scaffolds in the canonical Wnt pathway that converts signals at the plasma membrane to signals inhibiting the degradation of ß-catenin, leading to its accumulation and specific gene activation. In vertebrates, there are two forms of Axin, Axin1 and Axin2, which are similar at the protein level and genetically redundant. We show here that differential regulation of the two genes on the transcriptional and proteostatic level confers differential responsiveness that can be used in tissue-specific regulation. Such subtle features may distinguish other redundant gene pairs that are commonly found in vertebrates through gene knockout experiments.


Assuntos
Proteína Axina/metabolismo , Via de Sinalização Wnt , Proteína Axina/genética , Linhagem Celular , Humanos , Proteostase , Transcrição Gênica/fisiologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(17): e2117938119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452314

RESUMO

Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and water concentrations at the single cell are maintained in a tight range in cells under the same physiological conditions and are altered in different physiological states, such as cell cycle stages, attachment to substrates of different stiffness, or by entering senescence. In animal tissues, protein and lipid concentration varies with cell types, yet an unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein and lipid concentration profile provides means to quantitatively compare disease-related pathology, as demonstrated using models of Alzheimer's disease. This demonstration shows that NoRI is a broadly applicable technique for probing the biological regulation of protein mass, lipid mass, and water mass for studies of cellular and tissue growth, homeostasis, and disease.


Assuntos
Microscopia Óptica não Linear , Análise Espectral Raman , Metabolismo dos Lipídeos , Lipídeos , Microscopia/métodos , Proteínas , Análise Espectral Raman/métodos
10.
Dev Biol ; 493: 67-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334838

RESUMO

Wnt11 family proteins are ligands that activate a type of Dishevelled-mediated, non-canonical Wnt signaling pathway. Loss of function causes defects in gastrulation and/or anterior-posterior axis extension in all vertebrates. Non-mammalian vertebrate genomes encode two Wnt11 family proteins whose distinct functions have been unclear. We knocked down Wnt11b and Wnt11, separately and together, in Xenopus laevis. Single morphants exhibited very similar phenotypes of delayed blastopore closure, but they had different phenotypes during the tailbud period. In response to their very similar gastrulation phenotypes, we chose to characterize dual morphants. Using dark field illuminated time-lapse imaging and kymograph analysis, we identified a failure of dorsal blastopore lip maturation that correlated with slower blastopore closure and failure to internalize the endoderm at the dorsal blastopore lip. We connected these externally visible phenotypes to cellular events in the internal tissues by imaging intact fixed embryos stained for anillin and microtubules. We found that the initial extension of the archenteron is correlated with blastopore lip maturation, and archenteron extension is dramatically disrupted by decreased Wnt11 family signaling. We were aided in our interpretation of the immunofluorescence by the novel, membrane proximal location of the cleavage furrow protein anillin in the epithelium of the blastopore lip and early archenteron.


Assuntos
Gástrula , Lábio , Animais , Gástrula/metabolismo , Gastrulação/fisiologia , Xenopus laevis , Via de Sinalização Wnt
11.
Proc Natl Acad Sci U S A ; 117(44): 27388-27399, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087574

RESUMO

The fine balance of growth and division is a fundamental property of the physiology of cells, and one of the least understood. Its study has been thwarted by difficulties in the accurate measurement of cell size and the even greater challenges of measuring growth of a single cell over time. We address these limitations by demonstrating a computationally enhanced methodology for quantitative phase microscopy for adherent cells, using improved image processing algorithms and automated cell-tracking software. Accuracy has been improved more than twofold and this improvement is sufficient to establish the dynamics of cell growth and adherence to simple growth laws. It is also sufficient to reveal unknown features of cell growth, previously unmeasurable. With these methodological and analytical improvements, in several cell lines we document a remarkable oscillation in growth rate, occurring throughout the cell cycle, coupled to cell division or birth yet independent of cell cycle progression. We expect that further exploration with this advanced tool will provide a better understanding of growth rate regulation in mammalian cells.


Assuntos
Proliferação de Células , Rastreamento de Células/métodos , Aumento da Imagem , Microscopia Intravital/métodos , Algoritmos , Ciclo Celular , Divisão Celular , Linhagem Celular , Células HeLa , Humanos
12.
Proc Natl Acad Sci U S A ; 117(28): 16690-16701, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601235

RESUMO

Dvl (Dishevelled) is one of several essential nonenzymatic components of the Wnt signaling pathway. In most current models, Dvl forms complexes with Wnt ligand receptors, Fzd and LRP5/6 at the plasma membrane, which then recruits the destruction complex, eventually leading to inactivation of ß-catenin degradation. Although this model is widespread, direct evidence for the individual steps is lacking. In this study, we tagged mEGFP to C terminus of dishevelled2 gene using CRISPR/Cas9-induced homologous recombination and observed its dynamics directly at the single-molecule level with total internal reflection fluorescence (TIRF) microscopy. We focused on two questions: 1) What is the native size and what are the dynamic features of membrane-bound Dvl complexes during Wnt pathway activation? 2) What controls the behavior of these complexes? We found that membrane-bound Dvl2 is predominantly monomer in the absence of Wnt (observed mean size 1.1). Wnt3a stimulation leads to an increase in the total concentration of membrane-bound Dvl2 from 0.12/µm2 to 0.54/µm2 Wnt3a also leads to increased oligomerization which raises the weighted mean size of Dvl2 complexes to 1.5, with 56.1% of Dvl still as monomers. The driving force for Dvl2 oligomerization is the increased concentration of membrane Dvl2 caused by increased affinity of Dvl2 for Fzd, which is independent of LRP5/6. The oligomerized Dvl2 complexes have increased dwell time, 2 ∼ 3 min, compared to less than 1 s for monomeric Dvl2. These properties make Dvl a unique scaffold, dynamically changing its state of assembly and stability at the membrane in response to Wnt ligands.


Assuntos
Membrana Celular/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteína Wnt3A/metabolismo , Membrana Celular/química , Membrana Celular/genética , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/genética , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Ligação Proteica , Imagem Individual de Molécula , Via de Sinalização Wnt , Proteína Wnt3A/química , Proteína Wnt3A/genética
13.
Am Nat ; 200(5): 704-721, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260845

RESUMO

AbstractMaternal age effects on offspring life history are known in a variety of organisms, with offspring of older mothers typically having lower life expectancy (the Lansing effect). However, there is no consensus on the generality and mechanisms of this pattern. We tested predictions of the Lansing effect in several Daphnia magna clones and observed clone-specific magnitude and direction of the maternal age effect on offspring longevity. We also report ambidirectional, genotype-specific effects of maternal age on the propensity of daughters to produce male offspring. Focusing on two clones with contrasting life histories, we demonstrate that maternal age effects can be explained by lipid provisioning of embryos by mothers of different ages. Individuals from a single-generation maternal age reversal treatment showed intermediate life span and intermediate lipid content at birth. In the clone characterized by the "inverse Lansing effect," neonates produced by older mothers showed higher mitochondrial membrane potential in neural tissues than their counterparts born to younger mothers. We conclude that an inverse Lansing effect is possible and hypothesize that it may be caused by age-specific maternal lipid provisioning creating a calorically restricted environment during embryonic development, which in turn reduces fecundity and increases life span in offspring.


Assuntos
Longevidade , Reprodução , Animais , Masculino , Idade Materna , Núcleo Familiar , Lipídeos
14.
Biogerontology ; 23(1): 85-97, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34989913

RESUMO

Aging is a multifaceted process of accumulation of damage and waste in cells and tissues; age-related changes in mitochondria and in respiratory metabolism have the focus of aging research for decades. Studies of aging in nematodes, flies and mammals all revealed age-related decline in respiratory functions, with somewhat controversial causative role. Here we investigated age-related changes in respiration rates, lactate/pyruvate ratio, a commonly used proxy for NADH/NAD+ balance, and mitochondrial membrane potential in 4 genotypes of an emerging model organism for aging research, a cyclic parthenogen Daphnia magna. We show that total body weight-adjusted respiration rate decreased with age, although this decrease was small in magnitude and could be fully accounted for by the decrease in locomotion and feeding activity. Neither total respiration normalized by protein content, nor basal respiration rate measured in anaesthetized animals decreased with age. Lactate/pyruvate ratio and mitochondrial membrane potential (∆Ψmt) showed no age-related changes, with possible exceptions of ∆Ψmt in epipodites (excretory and gas exchange organs) in which ∆Ψmt decreased with age and in the optical lobe of the brain, in which ∆Ψmt showed a maximum at middle age. We conclude that actuarial senescence in Daphnia is not caused by a decline in respiratory metabolism and discuss possible mechanisms of maintaining mitochondrial healthspan throughout the lifespan.


Assuntos
Daphnia , Taxa Respiratória , Animais , Daphnia/metabolismo , Lactatos/metabolismo , Longevidade , Mamíferos , Piruvatos/metabolismo
15.
Genesis ; 58(9): e23383, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32584459

RESUMO

Cell Atlases are currently being constructed for human tissues as well as several model organisms. New technologies make creation of vast datasets in many species possible, but the value of such data crucially depends on the quality of annotation. The tools of annotating single cell data and creating knowledge representations comparable across organisms have been lagging. We argue that successfully creating Cell Atlases will require a revival of a boot-camp style forum for communal annotation combined with an intensive learning workshop, dubbed a "Jamboree". We report on our experience of successfully developing a structure and curriculum and running such a Jamboree for Xenopus Embryonic Cell Types at the Janelia Farms campus of the Howard Hughes Medical Institute.


Assuntos
Congressos como Assunto , Bases de Dados Genéticas , Genômica/métodos , Análise de Célula Única/métodos , Xenopus/genética , Animais , Xenopus/embriologia
16.
Nature ; 508(7497): 541-5, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670654

RESUMO

Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.


Assuntos
Ciclo Celular/fisiologia , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/genética , Proliferação de Células , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Ativação Enzimática , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Bulbo Olfatório/citologia , Bulbo Olfatório/enzimologia , Bulbo Olfatório/metabolismo , Proteína Oncogênica v-akt/química , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(18): E3729-E3738, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416665

RESUMO

Chemotherapy is widely used for cancer treatment, but its effectiveness is limited by drug resistance. Here, we report a mechanism by which cell density activates the Hippo pathway, which in turn inactivates YAP, leading to changes in the regulation of genes that control the intracellular concentrations of gemcitabine and several other US Food and Drug Administration (FDA)-approved oncology drugs. Hippo inactivation sensitizes a diverse panel of cell lines and human tumors to gemcitabine in 3D spheroid, mouse xenografts, and patient-derived xenograft models. Nuclear YAP enhances gemcitabine effectiveness by down-regulating multidrug transporters as well by converting gemcitabine to a less active form, both leading to its increased intracellular availability. Cancer cell lines carrying genetic aberrations that impair the Hippo signaling pathway showed heightened sensitivity to gemcitabine. These findings suggest that "switching off" of the Hippo-YAP pathway could help to prevent or reverse resistance to some cancer therapies.


Assuntos
Citotoxinas/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Desoxicitidina/farmacologia , Via de Sinalização Hippo , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Gencitabina
18.
Proc Natl Acad Sci U S A ; 114(50): E10838-E10847, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183978

RESUMO

Fertilization releases the meiotic arrest and initiates the events that prepare the egg for the ensuing developmental program. Protein degradation and phosphorylation are known to regulate protein activity during this process. However, the full extent of protein loss and phosphoregulation is still unknown. We examined absolute protein and phosphosite dynamics of the fertilization response by mass spectrometry-based proteomics in electroactivated eggs. To do this, we developed an approach for calculating the stoichiometry of phosphosites from multiplexed proteomics that is compatible with dynamic, stable, and multisite phosphorylation. Overall, the data suggest that degradation is limited to a few low-abundance proteins. However, this degradation promotes extensive dephosphorylation that occurs over a wide range of abundances during meiotic exit. We also show that eggs release a large amount of protein into the medium just after fertilization, most likely related to the blocks to polyspermy. Concomitantly, there is a substantial increase in phosphorylation likely tied to calcium-activated kinases. We identify putative degradation targets and components of the slow block to polyspermy. The analytical approaches demonstrated here are broadly applicable to studies of dynamic biological systems.


Assuntos
Fertilização/fisiologia , Meiose/fisiologia , Óvulo/fisiologia , Proteoma/metabolismo , Xenopus laevis/fisiologia , Animais , Cálcio/metabolismo , Feminino , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteólise , Xenopus laevis/embriologia
19.
BMC Biol ; 17(1): 28, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925871

RESUMO

BACKGROUND: Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. RESULTS: We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). CONCLUSIONS: Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.


Assuntos
Evolução Molecular , Genoma/fisiologia , Comportamento Predatório , Cifozoários/fisiologia , Animais , Evolução Biológica , Filogenia , Cifozoários/genética
20.
Proteomics ; 19(24): e1900155, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31697011

RESUMO

Although the microcrustacean Daphnia is becoming an organism of choice for proteomic studies, protein expression across its life cycle have not been fully characterized. Proteomes of adult females, juveniles, asexually produced embryos, and the ephippia-resting stages containing sexually produced diapausing freezing- and desiccation-resistant embryos are analyzed. Overall, proteins with known molecular functions are more likely to be detected than proteins with no detectable orthology. Similarly, proteins with stronger gene model support in two independent genome assemblies can be detected, than those without such support. This suggests that the proteomics pipeline can be applied to verify hypothesized proteins, even given questionable reference gene models. In particular, upregulation of vitellogenins and downregulation of actins and myosins in embryos of both types, relative to juveniles and adults, and overrepresentation of cell-cycle related proteins in the developing embryos, relative to diapausing embryos and adults, are observed. Upregulation of small heat-shock proteins and peroxidases, as well as overrepresentation of stress-response proteins in the ephippium relative to the asexually produced non-diapausing embryos, is found. The ephippium also shows upregulation of three trehalose-synthesis proteins and downregulation of a trehalose hydrolase, consistent with the role of trehalose in protection against freezing and desiccation.


Assuntos
Daphnia/embriologia , Daphnia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida , Proteoma/análise , Animais , Daphnia/crescimento & desenvolvimento , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA