RESUMO
Flame retardants have attracted growing environmental concern. Recently, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, living organisms' exposure, and toxicity. The presented studies include the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA) by ozonolysis and photocatalysis. In the photocatalytic process, nano- and micro-magnetite (n-Fe3O4 and µ-Fe3O4) are used as a catalyst. Monitoring of TBBPA decay in the photocatalysis and ozonolysis showed photocatalysis to be more effective. Significant removal of TBBPA was achieved within 10 min in photocatalysis (ca. 90%), while for ozonation, a comparable effect was observed within 70 min. To determine the best method of TBBPA degradation concentration on COD and TOC, the removals were examined. The highest oxidation state was obtained for photocatalysis on µ-Fe3O4, whereas for n-Fe3O4 and ozonolysis, the COD/TOC ratio was lower. Acute toxicity results show noticeable differences in the toxicity of TBBPA and its degradation products to Artemia franciscana and Thamnocephalus platyurus. The EC50 values indicate that TBBPA degradation products were toxic to harmful, whereas the TBPPA and post-reaction mixtures were toxic to the invertebrate species tested. The best efficiency in the removal and degradation of TBBPA was in the photocatalysis process on µ-Fe3O4 (reaction system 1). The examined crustaceans can be used as a sensitive test for acute toxicity evaluation.
Assuntos
Retardadores de Chama , Ozônio , Bifenil Polibromatos , Desinfecção , Óxido Ferroso-Férrico/toxicidade , Retardadores de Chama/toxicidade , Fenóis , Bifenil Polibromatos/toxicidadeRESUMO
One of the consequences of climate change is the expansion of insects' ranges. Colonization of new habitats forces insects to adapt to new conditions, such as low temperatures in winter. Cinara tujafilina is a thermophilic anholocyclic aphid species, which reproduce exclusively parthenogenetic throughout the year, including winter. On the areas where the populations of C. tujafilina had expanded, it demonstrated its adaptation for surviving colder winters. Based on analyses of changes in body chemical composition using Fourier transform infrared (FTIR) and changes in cryoprotectant content using high performance liquid chromatography (HPLC), we showed how aphid C. tujafilina adapted to overwintering as an active stage. In the FTIR spectrum of the winter type of C. tujafilina, higher peak values originating from the carbohydrates, proteins and lipids, were observed. Glucose, trehalose, mannitol, myo-inositol and glycerol were identified in the aphid body in winter as main putative cryoprotectants to increase the insects' tolerance to cold. The complex sugar-polyol cryoprotectant system facilitates aphids' survival in unfavorable low temperatures.
Assuntos
Adaptação Fisiológica , Afídeos/metabolismo , Temperatura Baixa , Crioprotetores/metabolismo , Estações do Ano , Animais , Cromatografia Líquida de Alta Pressão/métodos , Mudança Climática , Ecossistema , Glucose/metabolismo , Insetos/metabolismo , Larva/metabolismo , Manitol/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Trealose/metabolismoRESUMO
The literature shows that both in laboratory and in industrial conditions, the photocatalytic oxidation method copes quite well with degradation of most environmental toxins and pathogenic microorganisms. However, the effective utilization of photocatalytic processes for environmental decontamination and disinfection requires significant technological advancement in both the area of semiconductor material synthesis and its application. Here, we focused on the presence and "photocatalytic capability" of photocatalysts among soil minerals and their potential contributions to the environmental decontamination in vitro and in vivo. Reactions caused by sunlight on the soil surface are involved in its normal redox activity, taking part also in the soil decontamination. However, their importance for decontamination in vivo cannot be overstated, due to the diversity of soils on the Earth, which is caused by the environmental conditions, such as climate, parent material, relief, vegetation, etc. The sunlight-induced reactions are just a part of complicated soil chemistry processes dependent on a plethora of environmental determinates. The multiplicity of affecting factors, which we tried to sketch from the perspective of chemists and environmental scientists, makes us rather skeptical about the effectiveness of the photocatalytic decontamination in vivo. On the other hand, there is a huge potential of the soils as the alternative and probably cheaper source of useful photocatalytic materials of unique properties. In our opinion, establishing collaboration between experts from different disciplines is the most crucial opportunity, as well as a challenge, for the advancement of photocatalysis.
RESUMO
Orthodontic adhesive doped with sulfur-modified TiO2 promotes antibacterial effect. The objective of the study was to characterize the physical, mechanical and antibacterial properties of the orthodontic bracket adhesive, doped with modified titanium dioxide nanoparticles. Sulfur-doped TiO2 was synthetized and morphological topography was analyzed with TEM and SEM imaging. The catalytic performance during the degradation of rhodamine B was assessed. Nanomaterial was added at four concentration (1, 3, 6, and 10 wt%) to a commercial orthodontic adhesive. The shear bond strength and microhardness of a resin-based orthodontic adhesive containing S-TiO2 were evaluated. The inhibitory effect of the pure and doped adhesives against Escherichia coli and Streptococcus mutans was examined. As the results, the highest antimicrobial activity and good adhesive properties were noticed for light-cured orthodontic adhesive doped with 3% of S-TiO2. In this case, orthodontic adhesives with strong and long-lasting bactericidal properties can be created through the incorporation of modified TiO2 without negatively influencing microhardnesses, and bonding ability. White spot lesion and demineralization, which occurs very often in patients during orthodontic treatment, can be therefore minimized.
Assuntos
Antibacterianos , Cimentos Dentários , Escherichia coli , Streptococcus mutans , Titânio , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus mutans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Teste de Materiais , Resistência ao Cisalhamento , Braquetes Ortodônticos , Humanos , Enxofre/químicaRESUMO
Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Assuntos
Antibacterianos , Aderência Bacteriana , Escherichia coli , Lasers , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Catálise , Microscopia Eletrônica de Varredura , Humanos , Azul de Metileno/química , Azul de Metileno/farmacologia , Peri-Implantite/microbiologiaRESUMO
This study aims to investigate the impact of the π â π* excitation localised in one monomer on the equilibrium geometry and oscillations of the AA dimer. Several low-frequency vibrations appear in pairs in the LIF spectrum because oscillations involving intermolecular hydrogen bonds are coupled, generating approximately symmetric and antisymmetric combinations (especially the COOH rocking modes, LIF: 295 and 301 cm-1). Furthermore, quantitative evaluation based on the TDDFT(B3LYP) results indicates that a dozen among 90 intramolecular oscillations are strongly coupled. In contrast, most vibrations are decoupled or weakly coupled, since they involve remote parts of the monomers. This makes several single vibrations active in the LIF spectrum (including the bending mode of the NH···O intramolecular hydrogen bond associated the strongest vibronic band 442 cm-1), while the other in each pair remains inactive. The reason for decoupling of oscillations and symmetry breaking is that the π â π* electronic excitation is entirely localised within one of the monomers, which makes them no longer equivalent in terms of geometry and dynamics. Additionally, the excitation of one monomer induces strengthening and shortening by 6 pm of only one intermolecular hydrogen bond linking the carboxylic groups of both molecules. This causes the 1.7° in-plane distortion of the dimer and lowering of its symmetry to Cs group (from C2h for the S0 state). The distortion induces the activity of two low-frequency in-plane intermolecular vibrations, i.e. the geared oscillation (LIF: 58 cm-1) and the shearing motion (99 cm-1) of the monomers.
RESUMO
Photocatalytic degradation is a promising method for removing persistent organic pollutants from water because of its low cost (see solar-driven photocatalysis), high mineralisation of pollutants, and low environmental impact. Photocatalysts based on transition metal dichalcogenides (TMDs) have recently attracting high scientific interest due to their unique electrical, mechanical, and optical properties. A MoS2 photocatalyst of the layered structure was managed to photodegrade methylene blue (MB) under visible light irradiation. The catalyst was thoroughly characterised using SEM, AFM, powder XRD, UV-Vis, Raman, and XPS measurements. The photocatalytic degradation of the MB solution was conducted under the following conditions: (i) reductive and (ii) oxidative. The impact of optical and electronic properties, and the MoS2-MB interaction on photocatalytic activity, was discussed. The apparent rate constants (kapp) of degradation were 3.7 × 10-3; 7.7 × 10-3; 81.7 × 10-3 min-1 for photolysis, oxidative photocatalysis, and reductive photocatalysis. Comparison of the degradation efficiency of MB in reductive and oxidative processes indicates the important role of the reaction with the surface electron. In the oxidation process, oxygen reacts with an electron to form a superoxide anion radical involved in further transformations of the dye, whereas, in the reduction process, the addition of an electron destabilises the chromophore ring and leads to its rupture.
RESUMO
BACKGROUND: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. METHODS: In this paper, the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. RESULTS: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. CONCLUSIONS: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.
RESUMO
Phenol and 2,6-dibromo-4-methylphenol (DBMP) were removed from aqueous solutions by ozonolysis and photocatalysis. The properties and structural features of the catalysts and the organic compounds are discussed, as well as their influence on the degradation reaction rates. The degradation efficiency in photocatalytic processes was higher for DBMP (98%) than for phenol (approximately 50%). This proves the high efficiency of magnetite in the photocatalytic degradation of halogenated aromatic pollutants. The particularly high degradation efficiency regarding halogen-containing DBMP molecules and the yield of bromide ions indicate that DBMP degradation follows a mixed reduction-oxidation mechanism. DBMP molecules interact with the magnetite surface, enabling them to react with the available electrons, and, as a result, bromide ions can be released. The results confirm that magnetite is an effective photocatalyst in the degradation of halogenated aromatic pollutants.
RESUMO
In present work, we examine the photocatalytic properties of S-doped TiO2 (S1, S2) compared to bare TiO2 (S0) in present work. The photocatalytic tests were performed in alkaline aqueous solutions (pH = 10) of three differently substituted phenols (phenol (I), 4,4'-isopropylidenebisphenol (II), and 4,4'-isopropylidenebis(2,6-dibromophenol) (III)). The activity of the catalysts was evaluated by monitoring I, II, III degradation in the reaction mixture. The physicochemical properties (particle size, ζ-potential, Ebg, Eu, E0cb, E0vb, σo, KL) of the catalysts were established, and we demonstrated their influence on degradation reaction kinetics. Substrate degradation rates are consistent with first-order kinetics. The apparent conversion constants of the tested compounds (kapp) in all cases reveal the sulfur-loaded catalyst S2 to show the best photocatalytic activity (for compound I and II S1 and S2 are similarly effective). The different efficiency of photocatalytic degradation I, II and III can be explained by the interactions between the catalyst and the substrate solution. The presence of bromine substituents in the benzene ring additionally allows reduction reactions. The yield of bromide ion release in the degradation reaction III corresponds to the Langmuir constant. The mixed oxidation-reduction degradation mechanism results in higher degradation efficiency. In general, the presence of sulfur atoms in the catalyst network improves the degradation efficiency, but too much sulfur is not desired for the reduction pathway.
RESUMO
The mechanism of high-energy radiation induced degradation of perfluorooctanoate anion (PFOA, C7F15COO-) was investigated in aqueous solutions. Identification and quantification of transient species was performed by pulse radiolysis and of final products by gas and ion chromatography, electrochemical method using fluoride ion-selective electrode and ESI-MS after γ-radiolysis. Experimental data were further supported by kinetic simulations and quantum mechanical calculations. Radiation induced degradation of PFOA includes as a primary step one-electron reduction of PFOA by hydrated electrons (e-aq) resulting in formation of [C7F15COO-]â-. The rate constants of this reaction were found to be in the range 7.7 × 107-1.3 × 108 M-1s-1 for ionic strength of the solutions in the range 0.01-0.1 M and were independent of pH of the solutions. At pH > 11 [C7F15COO-]â- tends to defluorination whereas at lower pH undergoes protonation forming [C7F15COOH]â¢-. A sequence of consecutive reactions involving [C7F15COOH]â¢- leads to PFOA regeneration what explains a high radiation resistance of PFOA at moderately acidic solutions. A simultaneous presence of oxidizing transient species (âOH) in the irradiated system enhanced decomposition of (C7F14)·COO- as well as [C7F15COOH]â¢-. The key steps in this complex radical mechanism are the reactions of both these radical anions with âOH leading to semi-stable products which further undergo consecutive thermal reactions. On the other hand, direct reactions of PFOA with âOH and âH were found to be relatively slow (7 × 103 and <4 × 107 M-1s-1, respectively) and do not play relevant role in PFOA degradation. Collected for the first time results, such as dependence of selected reaction rate constants and selected products radiation chemical yields on pH as well as finding of several semi-stable products, missing in previous studies, indicate incompleteness of published earlier reaction pathways of PFOA degradation. The presented overall mechanism explains experimental results and verifies previously suggested mechanisms found in the literature.
Assuntos
Caprilatos , Estresse Oxidativo , Ânions , Caprilatos/química , Fluorocarbonos , Cinética , OxirreduçãoRESUMO
Molybdenum disulphide (MoS2) is a layered material with interesting photocatalytic properties. In this study, a layered MoS2 was produced using a hydrothermal method. The obtained material was characterised by XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscopy), UV-Vis spectroscopy, DLS (dynamic light scattering), and zeta potential analysis. For the evaluation of the photocatalytic properties of layered MoS2, a solution of bromophenol blue (BPB) and the catalyst was illuminated for 120 minutes. According to the experimental results, MoS2 exhibited excellent catalytic activity in BPB degradation. The MoS2 preparation method enabled improved light harvesting, avoided fast charge recombination (related to bulk MoS2), and created a large number of suitable electron transfer sites for photocatalytic reactions. Simulation of BPB decay and bromide production was carried out for a further understanding of MoS2 photocatalytic action. The simulation results proved the reduction mechanism of BPB photodegradation.
RESUMO
(1) Background: The shrinkage of water resources, as well as the deterioration of its quality as a result of industrial human activities, requires a comprehensive approach relative to its protection. Advanced oxidation processes show high potential for the degradation of organic pollutants in water and wastewater. TiO2 is the most popular photocatalyst because of its oxidizing ability, chemical stability and low cost. The major drawback of using it in powdered form is the difficulty of separation from the reaction mixture. The solution to this problem may be immobilization on a support (glass beads, molecular sieves, etc.). In order to avoid these difficulties, the authors propose to prepare a catalyst as a titanium plate covered with an oxide layer obtained with laser treatment. (2) Methods: In the present work, we generated titanium oxide structures using a cheap and fast method based on femtosecond laser pulses. The structurized plates were tested in the reaction of methylene blue (MB) degradation under UVA irradiation (365 nm). The photocatalytic activity and kinetic properties for the degradation of MB are provided. (3) Results: Studies of X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm a titanium oxide layer with laser-induced generated structures that are called "spikes" and "herringbones". The structurized plates were effective photocatalysts, and their activity depends on the structure of the oxide layer (spike and herringbone). (4) Conclusions: The immobilization of the catalyst on a solid support can be performed in a fast and reproducible manner by using the technique of laser ablation. The layers obtained with this method have been shown to have catalytic properties.
RESUMO
There is an expanding field of research investigating the instrumental methods to measure the development of affective disorders. The goal of the commentary is to turn the attention of medical practitioners at the molecular spectroscopy techniques (FTIR, Raman and UV-Vis) that can be applied for monitoring and quantification of the phospholipid-protein balance in human blood serum of depressed patients. Even facial overview of cited original research strongly suggests that disturbed phospholipid-protein balance could be one of the biomarkers of affective disorders. The blood serum monitoring of depressed patients would serve as a tool for more effective holistic therapy.
Assuntos
Demência/metabolismo , Depressão/metabolismo , Transtornos do Humor/metabolismo , Fosfolipídeos/metabolismo , Demência/genética , Depressão/genética , Humanos , Transtornos do Humor/genética , Fosfolipídeos/genéticaRESUMO
The blood-brain barrier (BBB) is a complex system controlling two-way substances traffic between circulatory (cardiovascular) system and central nervous system (CNS). It is almost perfectly crafted to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. For potential drug candidates, the CNSoriented neuropharmaceuticals as well as for those of primary targets in the periphery, the extent to which a substance in the circulation gains access to the CNS seems crucial. With the advent of nanopharmacology, the problem of the BBB permeability for drug nano-carriers gains new significance. Compared to some other fields of medicinal chemistry, the computational science of nano-delivery is still premature to offer the black-box type solutions, especially for the BBB-case. However, even its enormous complexity can spell out the physical principles, and as such subjected to computation. The basic understanding of various physicochemical parameters describing the brain uptake is required to take advantage of their usage for the BBB-nano delivery. This mini-review provides a sketchy introduction of essential concepts allowing application of computational simulation to the BBB-nano delivery design.