Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 40(1): e102236, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33034061

RESUMO

The generation of induced pluripotent stem cells (iPSCs) from somatic cells provides an excellent model to study mechanisms of transcription factor-induced global alterations of the epigenome and genome function. Here, we have investigated the early transcriptional events of cellular reprogramming triggered by the co-expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) in mouse embryonic fibroblasts (MEFs) and mouse hepatocytes (mHeps). In this analysis, we identified a gene regulatory network composed of nine transcriptional regulators (9TR; Cbfa2t3, Gli2, Irf6, Nanog, Ovol1, Rcan1, Taf1c, Tead4, and Tfap4), which are directly targeted by OSKM, in vivo. Functional studies using single and double shRNA knockdowns of any of these factors caused disruption of the network and dramatic reductions in reprogramming efficiency, indicating that this network is essential for the induction and establishment of pluripotency. We demonstrate that the stochastic co-expression of 9TR network components occurs in a remarkably small number of cells, approximating the percentage of terminally reprogrammed cells as a result of dynamic molecular events. Thus, the early DNA-binding patterns of OSKM and the subsequent probabilistic co-expression of essential 9TR components in subpopulations of cells undergoing reprogramming steer the reconstruction of a gene regulatory network marking the transition to pluripotency.


Assuntos
Reprogramação Celular/genética , Fibroblastos/fisiologia , Redes Reguladoras de Genes/genética , Hepatócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Células-Tronco Embrionárias/fisiologia , Feminino , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Fatores de Transcrição/genética , Transcrição Gênica/genética
2.
PLoS One ; 18(7): e0288005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432970

RESUMO

Generation of induced pluripotent stem cells from specialized cell types provides an excellent model to study how cells maintain their stability, and how they can change identity, especially in the context of disease. Previous studies have shown that chromatin safeguards cell identity by acting as a barrier to reprogramming. We investigated mechanisms by which the histone macroH2A variants inhibit reprogramming and discovered that they work as gate keepers of the mesenchymal cell state by blocking epithelial transition, a step required for reprogramming of mouse fibroblasts. More specifically, we found that individual macroH2A variants regulate the expression of defined sets of genes, whose overall function is to stabilize the mesenchymal gene expression program, thus resisting reprogramming. We identified a novel gene network (MSCN, mesenchymal network) composed of 63 macroH2A-regulated genes related to extracellular matrix, cell membrane, signaling and the transcriptional regulators Id2 and Snai2, all of which function as guardians of the mesenchymal phenotype. ChIP-seq and KD experiments revealed a macroH2A variant-specific combinatorial targeting of the genes reconstructing the MSCN, thus generating robustness in gene expression programs to resist cellular reprogramming.


Assuntos
Reprogramação Celular , Cromatina , Animais , Camundongos , Cromatina/genética , Membrana Celular , Reprogramação Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Matriz Extracelular
3.
Curr Med Chem ; 29(42): 6463-6478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34789121

RESUMO

BACKGROUND: Members of the α-thymosin family have long been studied for their immunostimulating properties. Among them, the danger-associated molecular patterns (DAMPs) prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) have been shown to act as immunomodulators in vitro, due to their ability to promote T helper type 1 (Th1) responses. Recently, we verified these findings in vivo, showing that both proTα and proTα(100-109) enhance antitumor-reactive T cell-mediated responses. METHODS: In view of the eventual use of proTα and proTα(100-109) in humans, we investigated their safety profile in silico, in human leukocytes and cancer cell lines in vitro, and in immunocompetent mice in vivo, in comparison to the proTα derivative thymosin alpha 1 (Τα1), a 28-mer peptide extensively studied for its safety in clinical trials. RESULTS: In silico prediction via computational tools showed that all three peptide sequences likely are non-toxic or do not induce allergic regions. In vitro, pro- Tα, proTα(100-109) and Tα1 did not affect the viability of human cancer cell lines and healthy donor-derived leukocytes, did not promote apoptosis or alter cell cycle distribution. Furthermore, mice injected with proTα, proTα(100-109) and Tα1 at doses equivalent to the suggested dose regimen of Tα1 in humans, did not show signs of acute toxicity, whereas proTα and proTα(100-109) increased the levels of proinflammatory and Th1- type cytokines in their peripheral blood. CONCLUSION: Our preliminary findings suggest that proTα and proTα(100-109), even at high concentrations, are non-toxic in vitro and in an acute toxicity model in vivo; moreover, we show that the two peptides retain their immunomodulatory properties in vivo and, eventually, could be considered for therapeutic use in humans.


Assuntos
Neoplasias , Timosina , Humanos , Camundongos , Animais , Timosina/toxicidade , Peptídeos/uso terapêutico , Citocinas , Fatores Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA