Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 206(11): 2503-2507, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33972373

RESUMO

The prior existence of human ACE2 protein-expressing mice used to study SARS-CoV and the rapid development of mouse-adapted virus strains have allowed the study of SARS-CoV-2 in mice, even as we are still learning about its natural pathology in humans. With myriad genetically altered strains on the C57BL/6 background and the abundance of immunological reagents available to interrogate its immune responses, the C57BL/6 mice may provide useful insight into the immunology of SARS-CoV-2 infection and vaccination. To conduct more detailed studies on their T cell responses to vaccines and infection, the epitopes eliciting those responses must be characterized in further detail. In this study, we mapped CD8 T cell epitopes within the receptor binding domain of the SARS-CoV-2 spike protein in C57BL/6 mice. Our study identified five major CD8 T cell epitopes in immunized C57BL/6 mice, including one, VVLSFELL, presented by H-2Kb and common between SARS-CoV and SARS-CoV-2.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Camundongos , Vacinação
2.
Cancer Immunol Immunother ; 66(1): 63-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787577

RESUMO

An immunotherapeutic strategy is discussed supporting anti-tumor activity toward malignancies overexpressing ganglioside D3. GD3 can be targeted by NKT cells when derived moieties are presented in the context of CD1d. NKT cells can support anti-tumor responses by secreting inflammatory cytokines and through cytotoxicity toward CD1d+GD3+ tumors. To overexpress GD3, we generated expression vector DNA and an adenoviral vector encoding the enzyme responsible for generating GD3 from its ubiquitous precursor GM3. We show that DNA encoding α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (SIAT8) introduced by gene gun vaccination in vivo leads to overexpression of GD3 and delays tumor growth. Delayed tumor growth is dependent on CD1d expression by host immune cells, as shown in experiments engaging CD1d knockout mice. A trend toward greater NKT cell populations among tumor-infiltrating lymphocytes is associated with SIAT8 vaccination. A single adenoviral vaccination introduces anti-tumor activity similarly to repeated vaccination with naked DNA. Here, greater NKT tumor infiltrates were accompanied by marked overexpression of IL-17 in the tumor, later switching to IL-4. Our results suggest that a single intramuscular adenoviral vaccination introduces overexpression of GD3 by antigen-presenting cells at the injection site, recruiting NKT cells that provide an inflammatory anti-tumor environment. We propose adenoviral SIAT8 (AdV-SIAT8) can slow the growth of GD3 expressing tumors in patients.


Assuntos
Gangliosídeos/biossíntese , Melanoma Experimental/imunologia , Melanoma/imunologia , Sialiltransferases/imunologia , Animais , Biolística , Linhagem Celular Tumoral , Gangliosídeos/imunologia , Células HEK293 , Humanos , Melanoma/enzimologia , Melanoma/terapia , Melanoma Experimental/enzimologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sialiltransferases/genética , Vacinas de DNA/imunologia
3.
J Immunol ; 193(12): 6124-34, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25385820

RESUMO

Adaptive immune responses to Ags released by dying cells play a critical role in the development of autoimmunity, allograft rejection, and spontaneous as well as therapy-induced tumor rejection. Although cell death in these situations is considered sterile, various reports have implicated type I IFNs as drivers of the ensuing adaptive immune response to cell-associated Ags. However, the mechanisms that underpin this type I IFN production are poorly defined. In this article, we show that dendritic cells (DCs) can uptake and sense nuclear DNA-associated entities released by dying cells to induce type I IFN. Remarkably, this molecular pathway requires STING, but not TLR or NLR function, and results in the activation of IRF3 in a TBK1-dependent manner. DCs are shown to depend on STING function in vivo to efficiently prime IFN-dependent CD8(+) T cell responses to tumor Ags. Furthermore, loss of STING activity in DCs impairs the generation of follicular Th cells and plasma cells, as well as anti-nuclear Abs, in an inducible model of systemic lupus erythematosus. These findings suggest that the STING pathway could be manipulated to enable the rational design of immunotherapies that enhance or diminish antitumor and autoimmune responses, respectively.


Assuntos
Autoimunidade , DNA/imunologia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Antígenos , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Morte Celular/genética , Morte Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Mediators Inflamm ; 2016: 5045248, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27122656

RESUMO

System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs. Here we discuss the current knowledge on the role of DC dysfunction in SLE pathogenesis, with the focus on DCs as targets for interventional therapies.


Assuntos
Células Dendríticas/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Humanos
5.
Am J Pathol ; 183(1): 226-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23665200

RESUMO

Tumors that develop in lymphangioleiomyomatosis (LAM) as a consequence of biallelic loss of TSC1 or TSC2 gene function express melanoma differentiation antigens. However, the percentage of LAM cells expressing these melanosomal antigens is limited. Here, we report the overexpression of ganglioside D3 (GD3) in LAM. GD3 is a tumor-associated antigen otherwise found in melanoma and neuroendocrine tumors; normal expression is largely restricted to neuronal cells in the brain. We also observed markedly reduced serum antibody titers to GD3, which may allow for a population of GD3-expressing LAM cells to expand within patients. This is supported by the demonstrated sensitivity of cultured LAM cells to complement mediated cytotoxicity via GD3 antibodies. GD3 can serve as a natural killer T (NKT) cell antigen when presented on CD1d molecules expressed on professional antigen-presenting cells. Although CD1d-expressing monocyte derivatives were present in situ, enhanced NKT-cell recruitment to LAM lung was not observed. Cultured LAM cells retained surface expression of GD3 over several passages and also expressed CD1d, implying that infiltrating NKT cells can be directly cytotoxic toward LAM lung lesions. Immunization with antibodies to GD3 may thus be therapeutic in LAM, and enhancement of existing NKT-cell infiltration may be effective to further improve antitumor responses. Overall, we hereby establish GD3 as a suitable target for immunotherapy of LAM.


Assuntos
Biomarcadores Tumorais/metabolismo , Gangliosídeos/metabolismo , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatose/metabolismo , Animais , Antígenos CD1d/metabolismo , Biomarcadores Tumorais/imunologia , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Gangliosídeos/imunologia , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/imunologia , Linfangioleiomiomatose/patologia , Camundongos , Células T Matadoras Naturais/metabolismo , Células Tumorais Cultivadas
6.
J Immunol ; 189(4): 1627-38, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22798675

RESUMO

Recent advancements in T cell immunotherapy suggest that T cells engineered with high-affinity TCR can offer better tumor regression. However, whether a high-affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope-reactive, CD8-independent, high-affinity TCR isolated from MHC class I-restricted CD4(+) T cells obtained from tumor-infiltrating lymphocytes (TIL) of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2-restricted TCR was positively selected on both CD4(+) and CD8(+) single-positive cells. However, when the TCR transgenic mouse was developed with a HLA-A2 background, the transgenic TCR was primarily expressed by CD3(+)CD4(-)CD8(-) double-negative T cells. TIL 1383I TCR transgenic CD4(+), CD8(+), and CD4(-)CD8(-) T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2(+)/human tyrosinase TCR double-transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high-affinity TIL 1383I TCR alone in CD3(+) T cells is sufficient to control the growth of murine and human melanoma, and the presence or absence of CD4 and CD8 coreceptors had little effect on its functional capacity.


Assuntos
Autoimunidade , Imunoterapia Adotiva/métodos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Citometria de Fluxo , Antígeno HLA-A2/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Immunohorizons ; 8(3): 254-268, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38483384

RESUMO

The impact of B cell deficiency on the humoral and cellular responses to SARS-CoV2 mRNA vaccination remains a challenging and significant clinical management question. We evaluated vaccine-elicited serological and cellular responses in 1) healthy individuals who were pre-exposed to SARS-CoV-2 (n = 21), 2) healthy individuals who received a homologous booster (mRNA, n = 19; or Novavax, n = 19), and 3) persons with multiple sclerosis on B cell depletion therapy (MS-αCD20) receiving mRNA homologous boosting (n = 36). Pre-exposure increased humoral and CD4 T cellular responses in immunocompetent individuals. Novavax homologous boosting induced a significantly more robust serological response than mRNA boosting. MS-α CD20 had an intact IgA mucosal response and an enhanced CD8 T cell response to mRNA boosting compared with immunocompetent individuals. This enhanced cellular response was characterized by the expansion of only effector, not memory, T cells. The enhancement of CD8 T cells in the setting of B cell depletion suggests a regulatory mechanism between B and CD8 T cell vaccine responses.


Assuntos
COVID-19 , Esclerose Múltipla , Humanos , Vacinas contra COVID-19 , RNA Viral , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Mensageiro
8.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076996

RESUMO

Background & aims: Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods: Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results: In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions: Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.

9.
Cell Rep ; 42(8): 112911, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516968

RESUMO

T-bet and FOXO1 are transcription factors canonically associated with effector and memory T cell fates, respectively. During an infectious response, these factors direct the development of CD8+ T cell fates, where T-bet deficiency leads to ablation of only short-lived effector cells, while FOXO1 deficiency results in selective loss of memory. In contrast, following adjuvanted subunit vaccination in mice, both effector- and memory-fated T cells are compromised in the absence of either T-bet or FOXO1. Thus, unlike responses to challenge with Listeria monocytogenes, productive CD8+ T cell responses to adjuvanted vaccination require coordinated regulation of FOXO1 and T-bet transcriptional programs. Single-cell RNA sequencing analysis confirms simultaneous T-bet, FOXO1, and TCF1 transcriptional activity in vaccine-elicited, but not infection-elicited, T cells undergoing clonal expansion. Collectively, our data show that subunit vaccine adjuvants elicit T cell responses dependent on transcription factors associated with effector and memory cell fates.


Assuntos
Adjuvantes de Vacinas , Linfócitos T CD8-Positivos , Animais , Camundongos , Diferenciação Celular , Memória Imunológica , Listeria monocytogenes , Camundongos Endogâmicos C57BL , Fatores de Transcrição
10.
Nat Commun ; 14(1): 3214, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270644

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid which increases in concentration locally and systemically across different cancer types. Yet, the exact mechanism(s) of how LPA affects CD8 T cell immunosurveillance during tumor progression remain unknown. We show LPA receptor (LPAR) signaling by CD8 T cells promotes tolerogenic states via metabolic reprogramming and potentiating exhaustive-like differentiation to modulate anti-tumor immunity. We found LPA levels predict response to immunotherapy and Lpar5 signaling promotes cellular states associated with exhausted phenotypes on CD8 T cells. Importantly, we show that Lpar5 regulates CD8 T cell respiration, proton leak, and reactive oxygen species. Together, our findings reveal that LPA serves as a lipid-regulated immune checkpoint by modulating metabolic efficiency through LPAR5 signaling on CD8 T cells. Our study offers key insights into the mechanisms governing adaptive anti-tumor immunity and demonstrates LPA could be exploited as a T cell directed therapy to improve dysfunctional anti-tumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Lisofosfolipídeos , Monitorização Imunológica , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
11.
Clin Transl Immunology ; 11(1): e1367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35028137

RESUMO

OBJECTIVES: While much of the research concerning factors associated with responses to immune checkpoint inhibitors (ICIs) has focussed on the contributions of conventional peptide-specific T cells, the role of unconventional T cells, such as mucosal-associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are an abundant population of innate-like T cells expressing a semi-invariant T-cell receptor restricted to the MHC class I-like molecule, MR1, presenting vitamin B metabolites derived from bacteria. We sought to characterise MAIT cells in melanoma patients and determined their association with treatment responses and clinical outcomes. METHODS: In this prospective clinical study, we analysed the frequency and functional profile of circulating and tumor-infiltrating MAIT cells in human melanoma patients. Using flow cytometry, we compared these across metastatic sites and between ICI responders vs. non-responders as well as healthy donors. RESULTS: We identified tumor-infiltrating MAIT cells in melanomas across metastatic sites and found that the number of circulating MAIT cells is reduced in melanoma patients compared to healthy donors. However, circulating MAIT cell frequencies are restored by ICI treatment in responding patients, correlating with treatment responses, in which patients with high frequencies of MAIT cells exhibited significantly improved overall survival. CONCLUSION: Our results suggest that MAIT cells may be a potential predictive marker of responses to immunotherapies and provide rationale for testing MAIT cell-directed therapies in combination with current and next-generation ICIs.

12.
Exp Dermatol ; 20(6): 496-501, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21426408

RESUMO

To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP. Similarly, expression of heme oxygenases was followed in skin from vitiligo patients before and after PUVA treatment. Single and double immunostainings were used in combination with light and confocal microscopic analysis and Western blotting. Melanocyte expression of heme oxygenase 1 is upregulated, whereas heme oxygenase 2 is reduced in response to UV and 4-TBP. Upregulation of inducible heme oxygenase 1 was also observed in UV-treated explant cultures, in skin of successfully PUVA-treated patients and in melanocytes cultured from vitiligo non-lesional skin. Heme oxygenase encoding genes were subsequently cloned to study consequences of either gene product on cell viability, demonstrating that HO-1 but not HO-2 overexpression offers protection from stress-induced cell death in MTT assays. HO-1 expression by melanocytes may contribute to beneficial effects of UV treatment for vitiligo patients.


Assuntos
Heme Oxigenase-1/metabolismo , Melanócitos/enzimologia , Melanócitos/patologia , Vitiligo/enzimologia , Vitiligo/patologia , Antioxidantes/metabolismo , Sequência de Bases , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Morte Celular/efeitos da radiação , Células Cultivadas , Retículo Endoplasmático/enzimologia , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Humanos , Melanócitos/efeitos da radiação , Estresse Oxidativo , Terapia PUVA , RNA/genética , RNA/metabolismo , Raios Ultravioleta , Regulação para Cima/efeitos da radiação , Vitiligo/tratamento farmacológico
13.
Cell Rep ; 36(8): 109591, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433030

RESUMO

The relationship between B cells and CD4 T cells has been carefully studied, revealing a collaborative effort in which B cells promote the activation, differentiation, and expansion of CD4 T cells while the so-called "helper" cells provide signals to B cells, influencing their class switching and fate. Interactions between B cells and CD8 T cells are not as well studied, although CD8 T cells exhibit an accelerated contraction after certain infections in B-cell-deficient mice. Here, we find that B cells significantly enhance primary CD8 T cell responses after vaccination. Moreover, memory CD8 numbers and function are impaired in B-cell-deficient animals, leading to increased susceptibility to bacterial challenge. We also show that interleukin-27 production by B cells contributes to their impact on primary, but not memory, CD8 responses. Better understanding of the interactions between CD8 T cells and B cells may aid in the design of more effective future vaccine strategies.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Interleucina-27/imunologia , Interleucina-27/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , Humanos , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Receptores Virais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
14.
Am J Pathol ; 175(6): 2463-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19893037

RESUMO

The antibody HMB45 is used to diagnose lymphangioleiomyomatosis, a hyperproliferative disorder of lung smooth muscle cells with mutations in both alleles of either TSC1 or TSC2. A subset of these tumor cells expresses the melanoma-associated antigens gp100 and melanoma antigen recognized by T cells (MART-1). To explore the feasibility of targeting tumors in lymphangioleiomyomatosis by melanoma immunotherapy, we therefore assessed melanoma target antigen expression and existing immune infiltration of affected tissue compared with normal lung and melanoma as well as the susceptibility of cultured lymphangioleiomyomatosis cells to melanoma reactive cytotoxic T lymphocytes in vitro. Tumors expressed tyrosinase-related proteins 1 and 2 but not tyrosinase, in addition to gp100 and MART-1, and were densely infiltrated by macrophages, but not dendritic cells or T cell subsets. Although CD8(+) lymphocytes were sparse compared with melanoma, cells cultured from lymphangioleiomyomatosis tissue were susceptible to cytotoxic, gp100 reactive, and major histocompatibility complex class I restricted CD8(+) T cells in functional assays. Responder T cells selectively clustered and secreted interferon-gamma in response to HLA-matched melanocytes and cultured lymphangioleiomyomatosis cells. This reactivity exceeded that based on detectable gp100 expression; thus, tumor cells in lymphangioleiomyomatosis may process melanosomal antigens different from melanocytic cells. Therefore, boosting immune responses to gp100 in lymphangioleiomyomatosis may offer a highly desirable treatment option for this condition.


Assuntos
Antígenos de Neoplasias/imunologia , Citotoxicidade Imunológica , Linfangioleiomiomatose/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Antígenos de Neoplasias/metabolismo , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoterapia/métodos , Oxirredutases Intramoleculares/imunologia , Oxirredutases Intramoleculares/metabolismo , Linfangioleiomiomatose/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Antígeno MART-1 , Melanoma/imunologia , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas de Neoplasias/metabolismo , Oxirredutases/imunologia , Oxirredutases/metabolismo , Neoplasias Cutâneas/imunologia , Antígeno gp100 de Melanoma
15.
Immunohorizons ; 4(3): 140-152, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161059

RESUMO

Myriad studies have linked type I IFN to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). Although increased levels of type I IFN are found in patients with SLE, and IFN blockade ameliorates disease in many mouse models of lupus, its precise roles in driving SLE pathogenesis remain largely unknown. In this study, we dissected the effect of type I IFN sensing by CD4 T cells and B cells on the development of T follicular helper cells (TFH), germinal center (GC) B cells, plasmablasts, and antinuclear dsDNA IgG levels using the bm12 chronic graft-versus-host disease model of SLE-like disease. Type I IFN sensing by B cells decreased their threshold for BCR signaling and increased their expression of MHC class II, CD40, and Bcl-6, requirements for optimal GC B cell functions. In line with these data, ablation of type I IFN sensing in B cells significantly reduced the accumulation of GC B cells, plasmablasts, and autoantibodies. Ablation of type I IFN sensing in T cells significantly inhibited TFH expansion and subsequent B cell responses. In contrast to the effect in B cells, type I IFN did not promote proliferation in the T cells but protected them from NK cell-mediated killing. Consequently, ablation of either perforin or NK cells completely restored TFH expansion of IFNAR-/- TFH and, subsequently, restored the B cell responses. Together, our data provide evidence for novel roles of type I IFN and immunoregulatory NK cells in the context of sterile inflammation and SLE-like disease.


Assuntos
Linfócitos B/imunologia , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Centro Germinativo/imunologia , Células Matadoras Naturais/imunologia , Lúpus Eritematoso Sistêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptor de Interferon alfa e beta/genética
17.
J Virol ; 82(4): 1827-37, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18045940

RESUMO

The mechanisms mediating protective immunity to hepatitis C virus (HCV) infection are incompletely understood because early infection in humans is rarely identified, particularly in those individuals who subsequently demonstrate spontaneous virus eradication. We have established a large national network of patients with acute HCV infection. Here, we comprehensively examined total HCV-specific CD4(+) and CD8(+) T-cell responses and identified functional T-cell thresholds that predict recovery. Interestingly, we found that the presence of HCV-specific cytotoxic T lymphocytes (CTLs) that can proliferate, exhibit cytotoxicity, and produce gamma interferon does not ensure recovery, but whether these CTLs were primed in the presence or absence of CD4(+) T-cell help (HCV-specific interleukin-2 production) is a critical determinant. These results have important implications for early prediction of the virologic outcome following acute HCV and for the development of novel immunotherapeutic approaches.


Assuntos
Convalescença , Hepatite C/imunologia , Interferon gama/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , Antígenos CD4/análise , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Feminino , Humanos , Masculino , Remissão Espontânea , Linfócitos T Citotóxicos/imunologia
18.
Sci Immunol ; 3(27)2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194241

RESUMO

In contrast to responses against infectious challenge, T cell responses induced via adjuvanted subunit vaccination are dependent on interleukin-27 (IL-27). We show that subunit vaccine-elicited cellular responses are also dependent on IL-15, again in contrast to the infectious response. Early expression of interferon regulatory factor 4 (IRF4) was compromised in either IL-27- or IL-15-deficient environments after vaccination but not infection. Because IRF4 facilitates metabolic support of proliferating cells via aerobic glycolysis, we expected this form of metabolic activity to be reduced in the absence of IL-27 or IL-15 signaling after vaccination. Instead, metabolic flux analysis indicated that vaccine-elicited T cells used only mitochondrial function to support their clonal expansion. Loss of IL-27 or IL-15 signaling during vaccination resulted in a reduction in mitochondrial function, with no corresponding increase in aerobic glycolysis. Consistent with these observations, the T cell response to vaccination was unaffected by in vivo treatment with the glycolytic inhibitor 2-deoxyglucose, whereas the response to viral challenge was markedly lowered. Collectively, our data identify IL-27 and IL-15 as critical to vaccine-elicited T cell responses because of their capacity to fuel clonal expansion through a mitochondrial metabolic program previously thought only capable of supporting quiescent naïve and memory T cells.


Assuntos
Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Aerobiose , Alérgenos/imunologia , Animais , Feminino , Glicólise , Interleucina-15/imunologia , Interleucinas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Ovalbumina/imunologia , Vacínia/imunologia
19.
J Clin Invest ; 128(6): 2535-2550, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757193

RESUMO

Eya proteins are critical developmental regulators that are highly expressed in embryogenesis but downregulated after development. Amplification and/or re-expression of Eyas occurs in many tumor types. In breast cancer, Eyas regulate tumor progression by acting as transcriptional cofactors and tyrosine phosphatases. Intriguingly, Eyas harbor a separate threonine (Thr) phosphatase activity, which was previously implicated in innate immunity. Here we describe what we believe to be a novel role for Eya3 in mediating triple-negative breast cancer-associated immune suppression. Eya3 loss decreases tumor growth in immune-competent mice and is associated with increased numbers of infiltrated CD8+ T cells, which, when depleted, reverse the effects of Eya3 knockdown. Mechanistically, Eya3 utilizes its Thr phosphatase activity to dephosphorylate Myc at pT58, resulting in a stabilized form. We show that Myc is required for Eya3-mediated increases in PD-L1, and that rescue of PD-L1 in Eya3-knockdown cells restores tumor progression. Finally, we demonstrate that Eya3 significantly correlates with PD-L1 in human breast tumors, and that tumors expressing high levels of Eya3 have a decreased CD8+ T cell signature. Our data uncover a role for Eya3 in mediating tumor-associated immune suppression, and suggest that its inhibition may enhance checkpoint therapies.


Assuntos
Antígeno B7-H1/imunologia , Proteínas de Ligação a DNA/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Terapia de Imunossupressão , Proteínas de Neoplasias/imunologia , Proteínas Tirosina Fosfatases/imunologia , Ativação Transcricional/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Regulação para Cima/imunologia , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
20.
Innate Immun ; 23(2): 175-187, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27932520

RESUMO

Sepsis is a life-threatening event predominantly caused by Gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell activation that leads to excessive pro-inflammatory cytokine IL-1ß, IL-6 and TNF-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting NF-κB signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared with wild type mice upon ultra-pure LPS challenge. We show that increased susceptibility to LPS-induced shock was associated with elevated serum level of IL-1ß and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow-derived MΦs; however, p65-deficient 'activated' peritoneal MΦs exhibited elevated IL-1ß and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due, in part, to increased accumulation of IL-1ß mRNA and protein in activated inflammatory MΦs. The increased IL-1ß was linked with heightened binding of PU.1 and CCAAT/enhancer binding protein-ß to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provide insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells.


Assuntos
Macrófagos Peritoneais/imunologia , Macrófagos/imunologia , Sepse/imunologia , Fator de Transcrição RelA/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Sepse/induzido quimicamente , Transativadores/metabolismo , Fator de Transcrição RelA/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA